博碩士論文 973204054 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:3.149.235.66
姓名 吳俊朋(Chun-peng Wu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用模擬實驗設計之方法分析酒精脫水之變壓吸附製程
(Simulation and design of numerical experiment of pressure swing adsorption process in separation of ethanol-water mixture)
相關論文
★ 醫療用氧氣濃縮機之改善與發展★ 變壓吸附法濃縮及回收氣化產氫製程中二氧化碳與氫氣之模擬
★ 變壓吸附法應用於小型化醫療用製氧機及生質酒精脫水產生無水酒精之模擬★ 變壓吸附法濃縮及回收氣化產氫製程中一氧化碳、二氧化碳與氫氣之模擬
★ 利用吸附程序於較小型發電廠煙道氣進氣量下捕獲二氧化碳之模擬★ 利用週期性吸附反應程序製造高純度氫氣並捕獲二氧化碳之模擬
★ 變溫吸附程序分離煙道氣中二氧化碳之連續性探討與實驗設計分析★ 利用PEI/SBA-15於變溫及真空變溫吸附捕獲煙道氣中二氧化碳之模擬
★ PEI/SBA-15固態吸附劑對二氧化碳吸附之實驗研究★ 以變壓吸附法分離汙染空氣中氧化亞氮之模擬
★ 以變壓吸附法分離汙染空氣中氧化亞氮之實驗★ 以變壓吸附法濃縮己二酸工廠尾氣中氧化亞氮之模擬
★ 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗★ 變壓吸附法回收發電廠廢氣與合成氣中二氧化碳之模擬
★ 利用變壓吸附程序分離甲醇裂解產氣中氫氣及一氧化碳之模擬★ 變壓吸附程序捕獲合成氣中二氧化碳之實驗研究與吸附劑之選擇評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文分為兩大部份。第一部份為承襲前人之製程進行實驗分析。該製程為雙塔八步驟,共含進料加壓、高壓產氣、低壓抽氣、產物沖洗及產物回充等步驟。而本論文則對進料壓力、高壓產氣時間、沖洗時間、產氣回充時間及進料溫度等因素建立三個等級的全因子(full-factorial)實驗設計分析。
第二部分則以前人之製程進行改良,除了增加一個產氣塔之外也加入了一個儲氣塔,另外也對於製程之步驟進行改善,將原有的產物沖洗步驟取消,希望在符合無水酒精(99.5wt%)標準下能夠盡量提高酒精回收率。故本製程為三塔九步驟。本製程之實驗分析則是對進料壓力、進料溫度、抽氣壓力、高壓產氣時間及產氣回充時間進行三個等級之全因子實驗設計分析。
摘要(英) This thesis contains two parts。The first part is a Design of Experiment(DOE) of a two-bed-eight-step PSA process of dehydration ethanol from previous work of our group. Feed pressure, production time, purge time, backfill time and feed temperature are the factors of full factorial design of experiment.
The process of second part comes from previous work of our group but some operating conditions had changed. Besides adding one adsorption bed to the process, a storage tank is also added。Expecting recovery could be increased by removing purge step and at the same time some operating conditions are also altered to keep ethanol purity at 99.5wt% which fits the goal of dehydration ethanol。The PSA process is a three-bed-nine step process. Feed pressure, feed temperature, vent pressure, production time and backfill time are chosen to do full factorial design factors of experimental design。
關鍵字(中) ★ 實驗設計
★ 酒精脫水
★ 變壓吸附
關鍵字(英) ★ Anhydrous Ethanol
★ PSA process
★ Design of numerical experiment
論文目次 摘要 1
Abstract 2
致謝 3
目錄 4
圖目錄 7
表目錄 9
第一章、緒論 1
第二章、簡介及文獻回顧 4
2-1變壓吸附之簡介 4
2-1-1變壓吸附基本原理 4
2-1-2吸附劑及其選擇性 5
2-1-3變壓吸附基本操作步驟 7
2-2文獻回顧 9
2-2-1 PSA 程序之發展及改進 9
2-2-2理論之回顧 11
2-3研究背景與目的 14
酒精脫水產生無水酒精之研究背景與目的 14
第三章、理論 20
3-1基本假設 20
3-2統制方程式 21
3-3線性驅動模式-酒精脫水製程 25
3-4參數推導 27
3-4-1線性驅動質傳係數質傳係數 27
3-4-2軸向分散係數 31
3-4-3熱傳係數 34
3-5邊界條件與流速 34
3-5-1邊界條件與節點流速 35
3-5-2閥公式 36
3-6求解步驟 36
第四章、酒精脫水程序之描述 39
4-1生質酒精脫水產生無水酒精製程 40
4-1-1 「變壓吸附法應用於小型化醫療用製氧機及生質酒精脫水產生無水酒精之模擬,陳穎信」論文之雙塔八步驟程序。 40
4-1-2酒精脫水三塔九步驟變壓吸附程序 43
4-2酒精脫水參數與操作條件 45
第五章、雙塔八步驟製程之實驗設計 49
5-1乙醇與水的二元相圖(VLE plot) 50
5-2雙塔八步驟之實驗設計分析 51
5-2-1殘差常態機率圖(Normal Probability Plot of the residuals)之分析 51
5-2-2 變異數分析(Analysis of variance, ANOVA) 55
5-2-3 Main Effect Plot與Interaction Plot 58
5-2-4 Regression Analysis 61
5-2-5 Surface Plot 67
第六章、三塔九步驟製程之實驗設計 69
6-1 殘差常態機率圖之分析(Normal probability plot of residuals) 71
6-2變異數分析(Analysis of variance, ANOVA) 74
6-3 Main Effect Plot與Interaction Plot 77
6-4 Regression Analysis 80
6-5 Surface Plot 87
第七章、結論 89
符號說明 92
參考文獻 96
附錄A、流速之估算方法 101
附錄B、名詞簡介 105
圖目錄
圖 1 Skarstrom Cycle 程序圖 8
圖 2電腦求解步驟 38
圖 3 雙塔八步驟之酒精脫水製程 42
圖 4 三塔九步驟之酒精脫水製程 44
圖 5 4.4atm下酒精與水的VLE plot 50
圖 6 雙塔八步驟之酒精濃度的Normal Probability Plot of the Residuals 52
圖 7 雙塔八步驟之酒精濃度的Histogram of the Residuals 52
圖 8 雙塔八步驟酒精回收率之Normal Probability Plot of the Residuals 54
圖 9 雙塔八步驟酒精回收率之Histogram the Residuals 54
圖 10雙塔八步驟酒精濃度之Main effect plot 59
圖 11雙塔八步驟酒精回收率之Main effect plot 59
圖 12雙塔八步驟酒精濃度之Interaction plot 60
圖 13雙塔八步驟酒精回收率之Interaction plot 60
圖 14雙塔八步驟酒精濃度對產氣沖洗時間與進料溫度之Surface plot 68
圖 15雙塔八步驟酒精回收率對產氣沖洗時間與進料溫度之Surface plot……………………………………………………………… 68
圖 16 三塔九步驟酒精濃度之Normal Probability Plot of the Residuals 72
圖 17三塔九步驟酒精濃度之Histogram of the Residuals 72
圖 18三塔九步驟酒精回收率之Normal Probability Plot of the Residuals 73
圖 19三塔九步驟酒精回收率之Histogram of the Residuals 73
圖 20三塔九步驟酒精濃度之Main effect plot 78
圖 21三塔九步驟酒精濃度之Interaction plot 78
圖 22三塔九步驟酒精回收率之Main effect plot 79
圖 23三塔九步驟酒精回收率之Interaction plot 79
圖 24 三塔九步驟酒精Recovery第一次迴歸之Q-Q plot 84
圖 25 三塔九步驟酒精回收率之二次迴歸QQ plot 86
圖 26三塔九步驟酒精濃度對進料溫度與抽氣壓力之Surface plot 88
圖 27三塔九步驟酒精回收率對進料溫度與第二步驟時間之Surface plot 88
表目錄
表 1常見的雙成分氣體及其分離因子* 6
表 2原子擴散體積表* 30
表 3酒精脫水程序之吸附塔和吸附劑之參數* 46
表 4乙醇與水氣體熱容量 (理想氣體狀態) 計算式之常數* 47
表 5乙醇與水氣體分子各項參數 47
表 6雙塔八步驟與三塔九步驟之操作條件 48
表 7 雙塔八步驟酒精濃度之ANOVA table 55
表 8雙塔八步驟酒精回收率之ANOVA table 56
表 9雙塔八步驟酒精濃度之不含Interaction term 的Linear and quadratic model 62
表 10雙塔八步驟酒精濃度之含Interaction term 的Linear and quadratic model 62
表 11雙塔八步驟酒精回收率之不含Interaction term 的Linear and quadratic model 64
表 12雙塔八步驟酒精回收率之含Interaction term 的Linear and quadratic model 65
表 13三塔九步驟之實驗因子 69
表 14三塔九步驟酒精濃度之ANOVA table 74
表 15三塔九步驟酒精回收率之ANOVA tbale 75
表 16三塔九步驟酒精濃度之Linear and quadratic model 80
表 17三塔九步驟酒精回收率之Linear and quadratic model 82
表 18 三塔九步驟之酒精回收率二次迴歸結果 85
表 19 雙塔八步驟之最佳化結果與程式模擬結果之比較 90
表 20 三塔九步驟之最佳化結果與程式模擬結果之比較 90
參考文獻 Al-Asheh S., F. Banat and N. Al-Lagtah, “Separation of Etanol-Water Mixtures Using Molecular Sieves and Biobased Adsorbents”, Chem. Eng. Res. Des., 82(A7), 855-864, 2004.
Anderson L.E., M. Gulati, P.J. Westgate, E.P. Kvam, K. Bowman and M.R. Ladisch, “Synthesis and Optimization of a New Starch-Based Adsorbent for Dehumidification of Air in a Pressure-Swing Dryer”, Ind. Eng. Chem. Res., 35(4), 1180-1187, 1996.
Berlin N.H., ”Method for Providing an Oxygen-Enriched Environment”, U.S. Patent 3,280,536, assigned to Esso Research and Engineering Company, 1966.
Berry K.E. and M. R. Ladisch, “Adsorption of Water from Liquid-Phase Ethanol-Water Mixtures at Room Temperature Using Starch-Based Adsorbents”, Ind. Eng. Chem. Res., 40(9), 2112-2115, 2001.
Bird R.B., W.E. Stewart, and E.N. Lightfoot, Transport Phenomena, 2nd Ed., Wiley, New York, 2007.
Carno M.J. and J.C. Gubulin, “Ethanol-Water Separation in the PSA Process”, Adsorpt., 8(3), 235-248, 2002.
Carton A., A.I. Torre, G. Gonzalez, J.L. Cabezas, ” Separation of Ethanol-Water Mixtures Using 3A Molecular Sieve”, Chem. Technol. Biotechnol., 39(2), 125-132, 1987.
Chou C.T. and W.C. Huang, “Incorporation of a Valve Equation into the Simulation of a Pressure Swing Adsorption Process”, Chem. Eng. Sci., 49(1), 75-84, 1994.
Chou C.T. and W.C. Huang, “Simulation of a Four-Bed Pressure Swing Adsorption Process for Oxygen Enrichment”, Ind. Eng. Chem. Res., 33(5), 1250-1258, 1994.
Chou C.T., C.L. Wu and A.S.T. Chiang, “A Complementary Pressure Swing Adsorption Process Configuration for Air Separation”, Sep. Tech., 4(2), 93-103, 1994.
Doong S.J., and R.T. Yang, “Hydrogen Purification by The Multi-Bed Pressure Swing Adsorption Process”, React. Polym., 6(1), 7-13, 1985.
Doong S.J., and R.T. Yang, "Bulk Separation of Multicomponent Gas Mixtures by Pressure Swing Adsorption: Pore/Surface Diffusion and Equilibrium Models", AIChE J., 32(3), 397-410, 1986.
Doong S.J., and R.T. Yang, "Bidisperse Pore Diffusion Model for Zeolite Pressure Swing Adsorption", AIChE J., 33(6), 1045-1049, 1987.
Farhadpour F.A. and A. Bono, “Sorption Separation of Ethanol-Water Mixture With a Bi-dispersed Hydrophobic Molecular Sieve, Sillicalite: Determination of the Controlling Mass Transfer Mechanism”, Chem. Eng. Process, 35(2), 141-155, 1996.
Farooq S. and D.M. Ruthven, “A Comparison of Linear Driving Force and Pore Diffusion-Models for a Pressure Swing Adsorption Bulk Separation Process”, Chem.Eng. Sci., 45(1), 107-115, 1990.
Fuller E.N., P.D. Schettler, and J.C. Giddings, “A Comparison of Methods for Predicting Gaseous Diffusion Coefficients”, J. Gas Chromatogr., 3, 222-227, 1965.
Fuller E.N., P.D. Schettler, and J.C. Giddings, ”A New Method for Prediction of Binary Gas-Phase Diffusion Coefficients”, Ind. Eng. Chem., 58(5), 18-27, 1966.
Garg D.R. and J.P. Ausikaitis, “Molecular Sieve Dehydration Cycle for High Water Content Stream”, Chem. Eng. Prog., 79(4), 60-65, 1983.
Gorbach A., M. Stegmaier and G. Eigenberger, “Measurement and modeling of water vapor adsorption on Zeolite 4A-equilibria and kinetics”, Adsorption, 10 (1), 29–46, 2004.
Guan J. and X. Hu, “Simulation and analysis of pressure swing adsorption: ethanol drying process by the electrical analogue”, Sep. Purif. Techol., 31(1), 31-35, 2003.
Guerin de Montgareuil P. and D. Domine, “Process for separation a binary gaseous mixture by adsorption”, U.S. Patent 3,155,468, assigned to Soci?t? L’Air Liquide, Paris, 1964.
Hassan M.M., D.M. Ruthven, and N.S. Raghavan, “Air Separation by Pressure Swing Adsorption on a Carbon Molecular Sieve”, Chem. Eng. Sci., 41(5), 1333-1343, 1986.
Hassan M.M., N.S. Raghvan, and D.M. Ruthven, “Pressure Swing Air Separation on a Carbon Molecular Sieve. II: Investigation of a Modified Cycle with Pressure Equalization and No Purge”, Chem.Eng. Sci., 42(8), 2037-2043, 1987.
Heinze G., Belgain Patent 613,267, assigned to Farbenfabriken Bayer A. G., 1962.
Huang W.C. and C.T. Chou, “A Moving Finite Element Simulation of a Pressure Swing Adsorption Process”, Comput. Chem. Eng., 21(3), 301-315, 1996.
Jee J.G., M.B. Kim, and C.H. Lee, “Adsorption Characteristics of Hydrogen Mixtures in a Layered Bed: Binary, Ternary, and Five-Component Mixturess”, Ind. Eng. Chem. Res., 40(3), 868-878, 2001.
Jones R.L., G.E. Keller II and R.C. Wells, ”Rapid Pressure Swing Adsorption Process with High Enrichment Factor”, U.S. Patent 4, 194, 892, assigend to Union Carbide Corporation, 1980.
Kowler D.E., and R.H. Kadlec, “The Optimal Control Of a Periodic Adsorber: Part I. Experiment”, AIChE J., 31(6), 1207-1212, 1972.
Ladisch M.R., M. Voloch, J. Hong, P. Bienkowski and G.T. Tsao, “Cornmeal Adsorber for Dehydration Ethanol vapors”, Ind. Eng. Chem. Process Des. Dev., 23(3), 437-443, 1984.
Lee C.H., J. Yang, and H. Ahn, “Effects of Carbon-to-Zeolite Ratio on Layered Bed H2 PSA for Coke Oven Gas”, AIChE J., 45(3), 535-545, 1999.
Marian Simo, Christopher J. Brownand and Vladimir Hlavacek, “Simulation of pressure swing adsorption in fuel ethanol production process”, Comput. Chem. Eng., 32(7), 1635-1649, 2008.
Marsh W.D., F.S. Pramuk, R.C. Hoke, and C.W. Skarstrom, “Pressure Equalization Depressuring in Heatless Adsorption”,U.S. Patent 3,142,547, assigned to Esso Research and Engineering Company, 1964.
McCabe W.L., J.C. Smith, and P. Harriott, Unit Operations of Chemical Engineering, Sixth Edition, McGraw-Hill, Inc., New York, 2001.
Nakao S., and M. Suzuki, “Mass Transfer Coefficient in Cyclic Adsorption and Desorption”, J. Chem. Eng. Jpn., 16(2), 114-119, 1983.
Park J.H., J.N. Kim, and S.H. Cho, “Performance Analysis of Four-Bed H2 PSA Process Using Layered Beds”, AIChE J., 46(4), 790-802, 2000.
Rao D.R. and S. Sircar, “Liquid-phase Adsorption of Bulk Ethanol-Water Mixtures by Alumina”, Adsorpt., Sci. Technol., 10, 93-104, 1993.
Perry R.H., D.W. Green, and J.O. Maloney, Perry’s Chemical Engineers’ Handbook, Sixth Edition, McGraw-Hill, Inc., New York, 1984.
Pitt W.W., G.L. Hagg and D.D. Lee, “Recovery of Ethanol from Fermentation Broths Using Selective Sorption- Desorption”, Biothernol. Bioeng., 25(1), 123-131, 1983.
Skarstrom C.W., “Method and Apparatus for Fractionating Gaseous Mixtures by Adsorption”, U.S. Patent 2,944,627, assigned to Esso Research and Engineering Company, 1960.
Smith J.M., and H.C. Van Ness, Introduction to Chemical Engineering Thermodynamics, Fourth Edition, McGraw-Hill, Inc., New York, 1987.
Tamura T., “Absorption Process for Gas Separation”, U.S. Patent 3,797,201, assigned to T. Tamura, Tokyo, Japan, 1974.
Teo W.K. and D.M. Ruthven, “Adsorption of Water from Aqueous Ethanol Using 3A Molecular Sieves”, Ind. Eng. Chem. Process Des. Dev., 25(1), 17-21, 1986.
Turnock P.H., and R.H. Kadlec, “Separation of Nitrogen and Methane via Periodic Adsorption”, AIChE J., 17(2), 335-342, 1971.
Vareli G.D., P.G. Demertzis and K. Akrida-Demertzi, “Water and ethanol adsorption on starchy and cellulosic substrates as biomass separation systems”, Z Lebensm Unters Forsch A, 205(3), 204-208, 1997.
Wakao N. and T. Funazkri, “Effect of fluid dispersion coefficients on particle-to-fluid mass transfer coefficients in packed beds. Correlation of Sherwood numbers”, Chem. Eng. Sci., 33(10), 1375–1384, 1978.
Wen C.Y., and L.T. Fan, Models for Flow Systems and Chemical Reactors, Dekker, New York, 1975.
Yang R.T., Gas Separation by Adsorption Processes, Imperial College Press, London, 1997.
廣州甘蔗糖業研究所,”對用甘蔗生產車用燃料酒精的探討”,2006七月
指導教授 周正堂(Cheng-tung Chou) 審核日期 2010-7-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明