博碩士論文 973209005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.129.58.166
姓名 蔡勖升(Hsu-sheng Tsai)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 常壓氫電漿擴散在磷化銦智切法上之研究
(Blistering in InP/InGaAs/InP p-i-n strucrure via hydrogen diffusion by atmospheric pressure plasma for Ion-Cut process)
相關論文
★ 以多孔矽為基板的矽奈米線陣列結構製程研究★ 塑膠機殼內部表面處理對電磁波干擾防護研究
★ 研磨頭氣壓分配在化學機械研磨晶圓膜厚移除製程上之影響★ 利用光導效應改善非接觸式電容位移感測器測厚儀之研究
★ 石墨材料時變劣化微結構分析★ 半導體黃光製程中六甲基二矽氮烷 之數量對顯影後圖型之影響
★ 可程式控制器機構設計之流程研究★ 伺服沖床運動曲線與金屬板材成型關聯性分析
★ 鋁合金7003與630不銹鋼異質金屬雷射銲接研究★ 應用銲針尺寸與線徑之推算進行銲線製程第二銲點參數優化與統一之研究
★ 複合式類神經網路預測貨櫃船主機油耗★ 熱力微照射製作絕緣層矽晶材料之研究
★ 微波活化對被植入於矽中之氫離子之研究★ 矽/石英晶圓鍵合之研究
★ 奈米尺度薄膜轉移技術★ 光能切離矽薄膜之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來,為了提高元件效能並降低成本,磷化銦等三五族材料與矽基
板整合之相關製程已受到廣泛研究。在異質磊晶製程中,晶格常數的差異
會造成異質介面產生缺陷而影響後續元件性能。智切法為最近新發展之材
料整合技術之一,本研究將其中離子佈植製程以常壓電漿擴散來取代,進
而降低製程成本。以電漿擴散後,將試片在不同溫度下作退火,另外也嘗
試將微波加入退火製程。氫離子濃度之縱深分佈於電漿擴散後在砷化銦鎵
的位置出現平台,而且在300°C 退火或180°C 微波退火後,在P 型磷化銦
與砷化銦鎵介面處聚集相對較多的氫離子,並於部分區域形成氣泡。氫離
子在磷化銦/砷化銦鎵/磷化銦結構中被捕捉的機制牽涉其與摻雜物之交
互作用,異質材料晶格常數差異所造成之應變,以及其與不同之第五族元
素間的庫倫作用力。另一方面,我們以微波退火成功地縮短時間並降低溫
度。本研究證實在智切法中,以常壓電漿擴散取代離子佈植之可行性。
摘要(英) Integration of InP-based materials with Si substrates has been investigated
extensively in order to achieve a high performance and reduce the cost in recent years.
The lattice mismatch leads the defects to appear near the interface between dissimilar
materials during heteroepitaxial growth. We ameliorate one part of the Smart-Cut®
(ion-cut) process, a newly developed technology for integration dissimilar materials,
by using atmospheric pressure plasma diffusion instead of implantation to reduce cost.
After plasma hydrogenation, we annealed the samples at different temperatures in a
furnace and implement a hybrid microwave/conventional annealing. We discovered
that the InGaAs layer significantly terraced the depth profile of hydrogen
concentration. The hydrogen could be trapped relatively more and formed bubbles in
part of the area at the p-InP/i-InGaAs interface after annealing above 300°C or with
microwaves at 180°C. The main mechanisms which caused the trapping of hydrogen
in the InP/InGaAs/InP p-i-n structure involved the interaction of hydrogen and
dopants, the strain induced by the lattice mismatch between InP and InGaAs, and the
difference in the Coulomb interaction of hydrogen and group V elements. On the
other hand, we successfully shortened the time and decreased the temperature by
accompanying microwaves with the annealing processes for layer splitting. Our
investigation made sure of the feasibility of using atmospheric pressure plasma for
hydrogen diffusion instead of implantation in the Smart-Cut® process.
關鍵字(中) ★ 常壓電漿
★ 智切法
★ 磷化銦
關鍵字(英) ★ InP
★ atmospheric pressure plasma
★ smart cut process
論文目次 Chinese Abstract i
Abstract ii
Acknowledgements iii
List of Figures vii
List of Tables x
Chapter 1 Introduction ................................................................................................ 1
1.1 Integration of InP with Si .................................................................................... 1
Chapter 2 Literature Reviews .................................................................................. 3
2.1 Conventional methods for InP layer transfer ........................................... 3
2.1.1 Bonding and etch-back method .................................................................... 3
2.1.2 Smart-Cut® process ............................................................................................ 5
2.2 Plasma hydrogenation for InP layer splitting .......................................... 7
2.2.1 Hydrogen diffusion in InP .............................................................................. 7
2.2.1.1 Solution to diffusion equation .......................................................... 7
2.2.1.2 Diffusion mechanisms in compounds .......................................... 11
2.2.1.3 Modeling the diffusion of hydrogen in compounds .................. 14
2.2.2 Interaction of hydrogen with dopants in InP ......................................... 15
2.2.2.1 Group II acceptors on indium sites ............................................... 16
2.2.2.2 Group IV acceptors on phosphorus sites ..................................... 16
2.2.2.3 Group VI donors on phosphorus sites .......................................... 19
2.2.2.4 Group IV donors on indium sites................................................... 19
2.2.3 Hydrogen in indium vacancies ................................................................... 21
2.3 Annealing process for hydrogen-induced exfoliation of InP........... 23
Chapter 3 Experiments .............................................................................................. 27
3.1 Blistering in InP/InGaAs/InP p-i-n structure ......................................... 27
3.1.1 Samples preparation ........................................................................................ 27
3.1.2 Plasma hydrogenation .................................................................................... 28
3.1.3 Annealing process ............................................................................................ 29
3.2 Experimental apparatus .................................................................................... 30
3.2.1 Technology of atmospheric pressure plasma ........................................ 30
3.2.2 AtomfloTM 400L linear-beam atmospheric plasma system ............. 33
3.3 Analytical apparatus ............................................................................................ 35
3.3.1 Optical Microscope ......................................................................................... 35
3.3.2 Scanning Electron Microscope ................................................................... 35
3.3.3 Transmission Electron Microscope ........................................................... 38
3.3.4 Secondary Ion Mass Spectrometry ............................................................ 39
3.3.5 High Angle Annular Dark Field ................................................................. 40
Chapter 4 Experimental Results ........................................................................... 42
Chapter 5 Discussions ................................................................................................. 58
Chapter 6 Conclusion and Future Work .......................................................... 63
References ......................................................................................................................... 66
參考文獻 [1] Osamu Wada, Hideki Hasegawa, “InP-based materials & devices: physics &
technology,” John Wiley & Sons, New York, 1999.
[2] Donato Pasquariello, Klas Hjort, “Plasma-assisted InP-to-Si low temperature
wafer bonding,” IEEE J. Select. Topics Quantum Electron, Vol. 8, No. 1, pp.118-131,
2002.
[3] Klas Hjort, “Transfer of InP epilayers by wafer bonding,” Journal of Crystal
Growth, 268, pp.346-358, 2004.
[4] V. Lehmann et al, “Bubble-free wafer bonding of GaAs and InP on silicon in a
microcleanroom,” Japanese Journal of Applied Physics, Vol. 28, pp.L2141-L2143,
1989.
[5] H. Wada et al, “Direct bonding of InP to different materials for optical devices,”
Proceedings of The 3rd International Symposium on Semiconductor Wafer Bonding:
Science, Technology and Applications, Vol. 95-7, The Electrochemical Society,
Pennington, NJ, pp.579, 1995.
[6] Q.-Y. Tong, U. Gösele, “Semiconductor wafer bonding,” John Wiley & Sons,
New York, 1999.
[7] M. Bruel, “Silicon on insulator material technology,” IEEE, Electronics Letters,
Vol. 31, No. 14, pp.1201-1202, 1995.
[8] M. Bruel, U.S. Patent, No. 5374564, 1994.
[9] R. Singh et al, “Low temperature InP layer transfer onto Si by helium implantation
and direct wafer bonding,” Institute of Physics Publishing, Semiconductor Science
and Technology, 21, pp.1311-1314, 2006.
[10] R. Singh et al, “Investigation of helium implantation induced blistering in InP,”
Journal of Luminescence, 121, pp.379–382, 2006.
[11] S. Hayashi et al, “The surface morphology of hydrogen-exfoliated InP and
exfoliation parameters,” Journal of The Electrochemical Society, 154 (4), H293-H296,
2007.
[12] L. B. Freund, “A lower bound on implant density to induce wafer splitting in
forming compliant substrate structures,” Applied Physics Letters, 70, (26),
pp.3519-3521, 1997.
[13] Peng Chen et al, “High crystalline-quality III-V layer transfer onto Si substrate,”
Applied Physics Letters, 92, 092107, pp.1-3, 2008.
[14] L. J. Huang et al, “SiGe-on-insulator prepared by wafer bonding and layer
transfer for high-performance field-effect transistors,” Applied Physics Letters, Vol.
78, No. 9, pp.1627-1629, 2001.
[15] Arthur J. Pitera et al, “Coplanar integration of lattice-mismatched
semiconductors with silicon by wafer bonding Ge/Si1-xGex/Si virtual substrates,”
Journal of The Electrochemical Society, 151 (7), G443-G447, 2004.
[16] T. A. Langdo et al, “SiGe-free strained Si on insulator by wafer bonding and
layer transfer,” Applied Physics Letters, Vol. 82, No. 24, pp.4256-4258, 2003.
[17] L. Di Cioccio et al, “III–V layer transfer onto silicon and applications,” Physica
Status Solidi(a), Vol. 202, No. 4, pp.509-515, 2005.
[18] H. Moriceau et al. “New layer transfers obtained by the SmartCut process,”
Journal of Electronic Materials, Vol. 32, No. 8, pp.829-835, 2003.
[19] Tuck, Brian, “Introduction to diffusion in semiconductors,” P. Peregrinus, 1974.
[20] P. Shewmon, “Diffusion in solids,” The Minerals, Metals & Materials Society,
1989.
[21] R. Morrow, “Modeling the diffusion of hydrogen in GaAs,” Journal of Applied
Physics, Vol. 66, No. 7, pp.2973-2979, 1989.
[22] V. Kagadeia, E. Nefyodtsev, “Modeling atomic hydrogen diffusion in GaAs,”
Proc. of SPIE, Vol. 5401, pp.677-682, 2004.
[23] W. Ulrici, “Hydrogen-impurity complexes in III–V semiconductors,” Institute of
Physics Publishing, Reports on Progress in Physics, 67, pp.2233-2286, 2004.
[24] R. Darwich et al, “Experimental study of the hydrogen complexes in indium
phosphide,” Physical Review B, Vol. 48, No. 24, pp.17776-17790, 1993.
[25] M. D. McCluskey et al, “Pressure dependence of local vibrational modes in InP,”
Physical Review B, Vol. 63, pp.125202-1-105202-4, 2001.
[26] B. Clerjaud et al, “Complexes of group-VI donors with hydrogen in GaP,”
Physica B, Vol. 273-274, pp.803-806, 1999.
[27] W. Ulrici et al, “Hydrogen passivation of the SiGa donor in GaP,” physica status
solidi(b), Vol. 235, No. 1, pp.102-106, 2003.
[28] C. P. Ewels et al, “Vacancy– and acceptor–H complexes in InP,” Institute of
Physics Publishing, Semiconductor Science and Technology, 11, pp.502-507, 1996.
[29] F. X. Zach, “Electrical properties of the hydrogen defect in InP and the
microscopic structure of the 2316 cm−1 hydrogen related line,” Journal of Electronic
Materials, Vol. 25, No. 3, pp.331-335, 1996.
[30] A. Fontcuberta i Morral et al, “Spectroscopic studies of the mechanism for
hydrogen-induced exfoliation of InP,” Physical Review B, Vol. 72,
pp.085219-1-085219-8, 2005.
[31] S. Hayashi et al, “Temperature dependence of hydrogen-induced exfoliation of
InP,” Applied Physics Letters, Vol. 85, No. 2, pp.236-238, 2004.
[32] www.surfxtechnologies.com
[33] Robert E, Reed Hill, “Physical metallurgy principles,” PWS-KENT Publishing
Company, 1992.
[34] John C. Vickerman, “Surface analysis - the principal techniques,” John Wiley &
Sons, 1997.
[35] Robert J. Keyse et al, “Introduction to scanning transmission electron
microscopy,” Journal of Computer-Assisted Microscopy, Vol. 10, No. 2, 1998.
[36] Hiroshi Ito, “Hydrogen diffusion in C-doped InGaAs,” Japanese Journal of
Applied Physics, Vol. 35, No. 9B, pp.L1155-L1157, 1996.
[37] Guozhong Cao, “Nanostructures & nanomaterials - synthesis, properties &
applications,” Imperial College Press, 2004.
[38] David E. Clark et al, “Processing materials with microwave energy,” Materials
Science and Engineering, A287, pp.153-158, 2000.
[39] David E. Clark, “Microwave processing of materials,” Annual Review of
Materials Science, Vol. 26, pp.299-331, 1996.
[40] D. W. Fischer et al, “Hydrogen-iron interaction in proton-implanted InP:Fe,”
Applied Physics Letters, Vol. 63, No. 22, pp.3038-3039, 1993.
[41] Q.-Y. Tong et al, “Low temperature InP layer transfer,” IEEE Electronics Letters,
Vol. 35, No. 4, pp.341-342, 1999.
[42] Y.-L. Chao et al, “Ammonium hydroxide effect on low-temperature wafer
bonding energy enhancement,” Electrochemical and Solid-State Letters, Vol. 8, No.
3, pp.G74-G77, 2005.
[43] Di Liang et al, “Low-temperature, strong SiO2-SiO2 covalent wafer bonding for
III–V compound semiconductors-to-silicon photonic integrated circuits,” Journal of
Electronic Materials, Vol. 37, No. 10, pp.1552-1559, 2008.
[44] B. Aspar et al, “Smart-cut® process using metallic bonding: application to
transfer of Si, GaAs, InP thin films,” IEEE Electronics Letters, Vol. 35, No. 12,
pp.1024-1025, 1999.
[45] Donato Pasquariello et al, “Low temperature epitaxial layer transferring using
oxygen plasma wafer bonding,” IEEE, pp.852-853, 2000.
[46] Donato Pasquariello et al, “Evaluation of InP-to-silicon heterobonding,”
Materials Science and Engineering, B80, pp.134–137, 2001.
[47] Taek Ryong Chung et al, “Room temperature GaAs-Si and InP-Si wafer direct
bonding by the surface activated bonding method,” Nuclear Instruments and Methods
in Physics Research, B121, pp.203-206, 1997.
[48] V. Dragoi et al, “Plasma activated wafer bonding for MEMS,” Proc. of SPIE,
Vol. 5836, pp.179-187, 2005.
[49] Xiaobo Ma et al, “N+ plasma-assisted wafer bonding between silicon and
chemical vapor deposition oxide at low temperature,” Materials Science in
Semiconductor Processing, 2009.
[50] Chenxi Wang et al, “Void-free room-temperature silicon wafer direct bonding
using sequential plasma activation,” Japanese Journal of Applied Physics, Vol. 47, No.
4, pp.2526–2530, 2008.
[51] Markus Gabriel et al, “Wafer direct bonding with ambient pressure plasma
activation,” Microsyst Technol, 12, pp.397–400, 2006.
[52] M. Eichler et al, “Atmospheric-pressure plasma pretreatment for direct bonding
of silicon wafers at low temperatures,” Surface & Coatings Technology, 203,
pp.826-829, 2008.
指導教授 李天錫(Tien-hsi Lee) 審核日期 2010-7-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明