參考文獻 |
[1] Osamu Wada, Hideki Hasegawa, “InP-based materials & devices: physics &
technology,” John Wiley & Sons, New York, 1999.
[2] Donato Pasquariello, Klas Hjort, “Plasma-assisted InP-to-Si low temperature
wafer bonding,” IEEE J. Select. Topics Quantum Electron, Vol. 8, No. 1, pp.118-131,
2002.
[3] Klas Hjort, “Transfer of InP epilayers by wafer bonding,” Journal of Crystal
Growth, 268, pp.346-358, 2004.
[4] V. Lehmann et al, “Bubble-free wafer bonding of GaAs and InP on silicon in a
microcleanroom,” Japanese Journal of Applied Physics, Vol. 28, pp.L2141-L2143,
1989.
[5] H. Wada et al, “Direct bonding of InP to different materials for optical devices,”
Proceedings of The 3rd International Symposium on Semiconductor Wafer Bonding:
Science, Technology and Applications, Vol. 95-7, The Electrochemical Society,
Pennington, NJ, pp.579, 1995.
[6] Q.-Y. Tong, U. Gösele, “Semiconductor wafer bonding,” John Wiley & Sons,
New York, 1999.
[7] M. Bruel, “Silicon on insulator material technology,” IEEE, Electronics Letters,
Vol. 31, No. 14, pp.1201-1202, 1995.
[8] M. Bruel, U.S. Patent, No. 5374564, 1994.
[9] R. Singh et al, “Low temperature InP layer transfer onto Si by helium implantation
and direct wafer bonding,” Institute of Physics Publishing, Semiconductor Science
and Technology, 21, pp.1311-1314, 2006.
[10] R. Singh et al, “Investigation of helium implantation induced blistering in InP,”
Journal of Luminescence, 121, pp.379–382, 2006.
[11] S. Hayashi et al, “The surface morphology of hydrogen-exfoliated InP and
exfoliation parameters,” Journal of The Electrochemical Society, 154 (4), H293-H296,
2007.
[12] L. B. Freund, “A lower bound on implant density to induce wafer splitting in
forming compliant substrate structures,” Applied Physics Letters, 70, (26),
pp.3519-3521, 1997.
[13] Peng Chen et al, “High crystalline-quality III-V layer transfer onto Si substrate,”
Applied Physics Letters, 92, 092107, pp.1-3, 2008.
[14] L. J. Huang et al, “SiGe-on-insulator prepared by wafer bonding and layer
transfer for high-performance field-effect transistors,” Applied Physics Letters, Vol.
78, No. 9, pp.1627-1629, 2001.
[15] Arthur J. Pitera et al, “Coplanar integration of lattice-mismatched
semiconductors with silicon by wafer bonding Ge/Si1-xGex/Si virtual substrates,”
Journal of The Electrochemical Society, 151 (7), G443-G447, 2004.
[16] T. A. Langdo et al, “SiGe-free strained Si on insulator by wafer bonding and
layer transfer,” Applied Physics Letters, Vol. 82, No. 24, pp.4256-4258, 2003.
[17] L. Di Cioccio et al, “III–V layer transfer onto silicon and applications,” Physica
Status Solidi(a), Vol. 202, No. 4, pp.509-515, 2005.
[18] H. Moriceau et al. “New layer transfers obtained by the SmartCut process,”
Journal of Electronic Materials, Vol. 32, No. 8, pp.829-835, 2003.
[19] Tuck, Brian, “Introduction to diffusion in semiconductors,” P. Peregrinus, 1974.
[20] P. Shewmon, “Diffusion in solids,” The Minerals, Metals & Materials Society,
1989.
[21] R. Morrow, “Modeling the diffusion of hydrogen in GaAs,” Journal of Applied
Physics, Vol. 66, No. 7, pp.2973-2979, 1989.
[22] V. Kagadeia, E. Nefyodtsev, “Modeling atomic hydrogen diffusion in GaAs,”
Proc. of SPIE, Vol. 5401, pp.677-682, 2004.
[23] W. Ulrici, “Hydrogen-impurity complexes in III–V semiconductors,” Institute of
Physics Publishing, Reports on Progress in Physics, 67, pp.2233-2286, 2004.
[24] R. Darwich et al, “Experimental study of the hydrogen complexes in indium
phosphide,” Physical Review B, Vol. 48, No. 24, pp.17776-17790, 1993.
[25] M. D. McCluskey et al, “Pressure dependence of local vibrational modes in InP,”
Physical Review B, Vol. 63, pp.125202-1-105202-4, 2001.
[26] B. Clerjaud et al, “Complexes of group-VI donors with hydrogen in GaP,”
Physica B, Vol. 273-274, pp.803-806, 1999.
[27] W. Ulrici et al, “Hydrogen passivation of the SiGa donor in GaP,” physica status
solidi(b), Vol. 235, No. 1, pp.102-106, 2003.
[28] C. P. Ewels et al, “Vacancy– and acceptor–H complexes in InP,” Institute of
Physics Publishing, Semiconductor Science and Technology, 11, pp.502-507, 1996.
[29] F. X. Zach, “Electrical properties of the hydrogen defect in InP and the
microscopic structure of the 2316 cm−1 hydrogen related line,” Journal of Electronic
Materials, Vol. 25, No. 3, pp.331-335, 1996.
[30] A. Fontcuberta i Morral et al, “Spectroscopic studies of the mechanism for
hydrogen-induced exfoliation of InP,” Physical Review B, Vol. 72,
pp.085219-1-085219-8, 2005.
[31] S. Hayashi et al, “Temperature dependence of hydrogen-induced exfoliation of
InP,” Applied Physics Letters, Vol. 85, No. 2, pp.236-238, 2004.
[32] www.surfxtechnologies.com
[33] Robert E, Reed Hill, “Physical metallurgy principles,” PWS-KENT Publishing
Company, 1992.
[34] John C. Vickerman, “Surface analysis - the principal techniques,” John Wiley &
Sons, 1997.
[35] Robert J. Keyse et al, “Introduction to scanning transmission electron
microscopy,” Journal of Computer-Assisted Microscopy, Vol. 10, No. 2, 1998.
[36] Hiroshi Ito, “Hydrogen diffusion in C-doped InGaAs,” Japanese Journal of
Applied Physics, Vol. 35, No. 9B, pp.L1155-L1157, 1996.
[37] Guozhong Cao, “Nanostructures & nanomaterials - synthesis, properties &
applications,” Imperial College Press, 2004.
[38] David E. Clark et al, “Processing materials with microwave energy,” Materials
Science and Engineering, A287, pp.153-158, 2000.
[39] David E. Clark, “Microwave processing of materials,” Annual Review of
Materials Science, Vol. 26, pp.299-331, 1996.
[40] D. W. Fischer et al, “Hydrogen-iron interaction in proton-implanted InP:Fe,”
Applied Physics Letters, Vol. 63, No. 22, pp.3038-3039, 1993.
[41] Q.-Y. Tong et al, “Low temperature InP layer transfer,” IEEE Electronics Letters,
Vol. 35, No. 4, pp.341-342, 1999.
[42] Y.-L. Chao et al, “Ammonium hydroxide effect on low-temperature wafer
bonding energy enhancement,” Electrochemical and Solid-State Letters, Vol. 8, No.
3, pp.G74-G77, 2005.
[43] Di Liang et al, “Low-temperature, strong SiO2-SiO2 covalent wafer bonding for
III–V compound semiconductors-to-silicon photonic integrated circuits,” Journal of
Electronic Materials, Vol. 37, No. 10, pp.1552-1559, 2008.
[44] B. Aspar et al, “Smart-cut® process using metallic bonding: application to
transfer of Si, GaAs, InP thin films,” IEEE Electronics Letters, Vol. 35, No. 12,
pp.1024-1025, 1999.
[45] Donato Pasquariello et al, “Low temperature epitaxial layer transferring using
oxygen plasma wafer bonding,” IEEE, pp.852-853, 2000.
[46] Donato Pasquariello et al, “Evaluation of InP-to-silicon heterobonding,”
Materials Science and Engineering, B80, pp.134–137, 2001.
[47] Taek Ryong Chung et al, “Room temperature GaAs-Si and InP-Si wafer direct
bonding by the surface activated bonding method,” Nuclear Instruments and Methods
in Physics Research, B121, pp.203-206, 1997.
[48] V. Dragoi et al, “Plasma activated wafer bonding for MEMS,” Proc. of SPIE,
Vol. 5836, pp.179-187, 2005.
[49] Xiaobo Ma et al, “N+ plasma-assisted wafer bonding between silicon and
chemical vapor deposition oxide at low temperature,” Materials Science in
Semiconductor Processing, 2009.
[50] Chenxi Wang et al, “Void-free room-temperature silicon wafer direct bonding
using sequential plasma activation,” Japanese Journal of Applied Physics, Vol. 47, No.
4, pp.2526–2530, 2008.
[51] Markus Gabriel et al, “Wafer direct bonding with ambient pressure plasma
activation,” Microsyst Technol, 12, pp.397–400, 2006.
[52] M. Eichler et al, “Atmospheric-pressure plasma pretreatment for direct bonding
of silicon wafers at low temperatures,” Surface & Coatings Technology, 203,
pp.826-829, 2008.
|