摘要(中) |
拍翼式飛行機器人,在實際的應用上可以用於偵查、搜救、軍事以及娛樂 等等用途。而拍翼式飛行機器人又擁有質量輕、低噪音、省能源以及行動靈敏 的特性。在此類型飛行機器人的設計上面,很很多參數會造成升力以及阻力的 引響,大致來說,會有馬赫數(mach number)、攻角(angle of attack)、旋 轉角度(rotation angle)、升力係數(lift coefficient)、阻力係數(drag coefficient)等主要參數。機構的部分是使用 LEGO mindstorms 相關零組件 組合而成,利用 LEGO 相關零配件即可組裝出傳動機構以及旋轉機構。傳動機構 及旋轉機構各考慮兩種架構,並之後比較其優缺點。本研究著重於變化旋轉角, 對於整體的升力及阻力的影響。然而,本研究著重於靜態上的基本分析模擬, 故選擇定機翼的模擬器來做實際情況的推演及預測。模擬器是使用 Stark Aerospace 公司所設計的空氣動力學分析軟體 VLAERO+來做模擬。在此假設情況 下,發現調整旋轉角度可以控制升力以及阻力的大小,但是需要一次調整一邊 的機翼,而非一次調整兩邊機翼。已知調整旋轉角度可以調整升力及阻力,故 在未來的情況下,可進一步設計有限狀態機做自動化調整的規劃。 |
摘要(英) |
In the real application, flapping aerial robots can be used in investigation, rescue, military and entertainment. They have some special advantages and characteristics such as light weight, low noise, energy saving, and quick action. In design of this kind of robots, there are many parameters such as Mach number, angle of attack, rotation angle, lift coefficient, and drag coefficient to influence lift and drag force. We use LEGO Mindstorms and some related parts and accessories to realize our mechanism. There are two types of transmission and rotation mechanism. We use graphical software NXT 2.1 which is developed by LEGO to program and control our mechanism. In brief summary of mechanism design, we compare pros and cons of two types of transmission and rotation mechanism. This research focuses on that rotation angle affecting the lift and drag force in the whole system. Especially, it aims on static analysis of rotation angle, so we choose fixed wing simulator to simulate and predict the real situations. This simulator is called VLAERO+ which is an aerodynamic analysis tool developed by Stark Aerospace company. In this assumption, we found that changing rotation angle can control magnitude of lift and drag force. But, we can only change one side of two wings. On future work, we can use existing research data to realize automation flapping aerial robot. |
參考文獻 |
[1] Y. C. Tai, and C. M. Ho, “MEMS wing technology for a battery-powered
ornithopter,” The 13th IEEE International Conference on Micro Electro
Mechanical Systems, pp.799-804, 2000.
[2] W. Shyy, M. Berg, and D. Ljungqvist, “Flapping and flexible wings for
biological and micro air vehicles,” Progress in Aerospace Sciences, Vol. 35,
pp. 455-505, 1999.
[3] J. M.WAKELING and C. P. ELLINGTON, “Dragonfly flight. I. Gliding
flight and steady-state aerodynamic forces,”Journal of Experimental
Biology, 1997, 200.3: 543-556.
[4] J. M. WAKELING and C. P. ELLINGTON, “Dragonfly flight. II. Velocities,
accelerations and kinematics of flapping flight,” Journal of experimental
biology, 1997, 200.3: 557-582.
[5] J. M. WAKELING and C. P. ELLINGTON, “Dragonfly flight. III. Lift and
power requirements,”Journal of Experimental Biology, 1997, 200.3:
583-600.
[6] A. Peter, W. Krister, and N. Peter, “Creation of a Learning, flying robot by means of evolution,” in GECCO ’02 Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1279-1285, 2002.
[7] W. Wei-Chung, L. Schenato, R.J. Wood, and R.S. Fearing, "Biomimetic sensor suite for flight control of a micromechanical flying insect: design and experimental results," Robotics and Automation, 2003. Proceedings. ICRA ’03. IEEE International Conference on , vol.1, pp. 1146- 1151 vol.1, 14-19 Sept. 2003.
[8] D. Xinyan, L. Schenato, W. Wei Chung, and S.S. Sastry, "Flapping flight for biomimetic robotic insects: Part I-System Modeling," Robotics, IEEE Transactions on , vol.22, no.4, pp.776-788, Aug. 2006.
[9] D. Xinyan, L. Schenato, W. Wei Chung, and S.S. Sastry, "Flapping flight for biomimetic robotic insects: Part II-Flight Control Design," Robotics, IEEE Transactions on , vol.22, no.4, pp.789-803, Aug. 2006.
47
[10] R. Wood, “Liftoff of a 60mg flapping-wing MAV,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007, pp. 1889-1894.
[11] R. Wood, “Design, fabrication, and analysis, of a 3DOF, 3cm flapping-wing mav,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007, pp.1576-1581.
[12] R. Wood, “The first takeoff of a biologically inspired at-scale robotic insect,” in IEEE Transactions on Robotics, vol. 24, no. 2, 2008, pp.341-347.
[13]  http://www.am-inc.com/VLAERO.shtml
[14] 廖俊瑋,”翼展 10 公分之拍翼式微飛行器研製,”淡江大學機械與機電工 程學系碩士論文 2009
[15] 何仁揚,”拍撲式微飛行器之製作及其現地升力之量測研究,”淡江大學 機械與機電工程學系碩士論文 2005
[16] http://catalog.digitalarchives.tw/item/00/14/5a/b2.html
[17] http://goo.gl/3oZ95
[18] http://www.nipic.com/show/1/41/58a2e7ff38b832b2.html
[19] http://goo.gl/doK0B
[20] http://zh.wikipedia.org/wiki/File:Induced_drag_r.svg
[21] http://zh.wikipedia.org |