參考文獻 |
[1] International Energy Agency (IEA),“World Energy Outlook 2009 - Executive Summary © OECD/IEA,”2009.
[2] International Energy Agency (IEA),“World Energy Outlook 2008 - Executive Summary © OECD/IEA,”2008.
[3] 經濟部能源局,“2007年能源科技研究發展白皮書,” 2007。
[4] 經濟部能源局,“中華民國97年能源統計手冊,” 2009。
[5] United Nations (UN),“Kyoto Protocol to the United Nations Framework Convention on Climate Change,”1998.
[6] 林子倫,“哥本哈根會議後的全球氣候政治趨勢,” 能源報導,2010年2月號,pp. 5-9,經濟部能源局,2010。
[7] M. D. Archer,“The Past and Present,”in Clean Electricity from Photovoltaics, edited by M. D. Archer and R. Hill, Ch.1, pp. 1-31, Imperial College Press, 2001.
[8] D. M. Chapin, C. S. Fuller and G. O. Pearson,“A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power,”Journal of Applied Physics, vol. 25, pp. 676-677, 1954.
[9] T. Surek,“Crystal Growth and Materials Research in Photovoltaics: Progress and Challenges,”Journal of Crystal Growth, vol. 275, pp. 292-304, 2005.
[10] L. L. Kazmerski,“Solar Photovoltaics R&D at the Tipping Point: a 2005 Technology Overview,”Journal of Electron Spectroscopy and Related Phenomena, vol. 150, pp. 105–135, 2006.
[11] J. Zhao, A. Wang and M. A. Green,“24.5% Efficiency Silicon PERT Cells on MCZ Substrates and 24.7% Efficiency PERL Cells on FZ Substrates,”Progress in Photovoltaics: Research and Applications, vol. 7, pp. 471-474, 1999.
[12] O. Schultz, S. W. Glunz and G. P. Willeke,“Multicrystalline Silicon Solar Cells Exceeding 20% Efficiency,”Progress in Photovoltaics: Research and Applications, vol. 12, pp. 553-558, 2004.
[13] B. Yan, G. Yue and S. Guha,“Status of nc-Si:H Solar Cells at United Solar and Roadmap for Manufacturing a-Si:H and nc-Si:H Based Solar Panels,”in Amorphous and Polycrystalline Thin-Film Silicon Science and Technology - 2007, edited by V. Chu, S. Miyazaki, A. Nathan, J. Yang, and H. W. Zan, Materials Research Society Symposium Proceeding, vol. 989, Paper #: 0989-A15-01, 2007.
[14] R. R. King, A. Boca, W. Hong, X.-Q. Liu, D. Bhusari, D. Larrabee, K. M. Edmondson, D. C. Law, C. M. Fetzer, S. Mesropian, and N. H. Karam,“Band-Gap-Engineered Architectures for High-Efficiency Multijunction Concentrator Solar Cells,”Proceedings of the 24th European Photovoltaic Solar Energy Conference and Exhibition, pp. 55-61, 2009.
[15] X. Wu, J. C. Keane, R. G. Dhere, C. DeHart, A. Duda, T. A. Gessert, S. Asher, D. H. Levi, and P. Sheldon,“16.5%-Efficient CdS/CdTe Polycrystalline Thin-Film Solar Cell,”Proceedings of 17th European Photovoltaic Solar Energy Conference, pp. 995–1000, 2001.
[16] I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To and R. Noufi,“19.9% - Efficient ZnO/CdS/CuInGaSe2 Solar Cell with 81.2% Fill Factor,”Progress in Photovoltaics: Research and Applications, vol. 16, pp. 235-239, 2008.
[17] L. Han, A. Fukui, N. Fuke, N. Koide, and R. Yamanaka,“High Efficiency of Dye-Sensitized Solar Cell and Module,”Proceedings of the 4th World Conference on Photovoltaic Energy Conversion, vol. 1, pp. 179-182, 2006.
[18] M. A. Green, K. Emery, Y. Hishikawa, and W. Warta,“Solar Cell Efficiency Tables (Version 35),”Progress in Photovoltaics: Research and Applications, vol. 18, pp. 144-150, 2010.
[19] M. Grätzel, “Photovoltaic Performance and Long-Term Stability of Dye-Sensitized Meosocopic Solar Cells,”Comptes Rendus Chimie, vol. 9, pp. 578-583, 2006.
[20] N. Kato, Y. Takeda, K. Higuchi, A. Takeichi, E. Sudo, H. Tanaka, T. Motohiro, T. Sano, and T. Toyoda,“Degradation Analysis of Dye-Sensitized Solar Cell Module after Long-Term Stability Test under Outdoor Working Condition,”Solar Energy Materials and Solar Cells, vol. 93, pp. 893-897, 2009.
[21] P. M. Sommeling, M. Späth, H. J. P. Smit, N. J. Bakker, and J. M. Kroon, “Long-Term Stability Testing of Dye-Sensitized Solar Cells,”Journal of Photochemistry and Photobiology A: Chemistry, vol. 164, pp. 137-144, 2004.
[22] M. Jørgensen, K. Norrman, and F. C. Krebs,“Stability/Degradation of Polymer Solar Cells,”Solar Energy Materials and Solar Cells, vol. 92, pp. 686–714, 2008.
[23] 林天行、譚小金、葉仰哲、范馨文,“能源材料發展趨勢與機會探討,”工業技術研究院產業經濟與趨勢研究中心,2006。
[24] P. A. Iles,“Evolution of Space Solar Cells,”Solar Energy Materials and Solar Cells, vol. 68, pp. 1-13, 2001.
[25] S. Bailey and R. Raffaelle,“Space Solar Cells and Arrays,”in Handbook of Photovoltaic Science and Engineering, edited by A. Luque and S. Hegedus, Ch.10, pp. 413-448, John Wiley & Sons, 2003.
[26] D. A. Jenny, J. J. Loferski, and P. Rappaport,“Photovoltaic Effect in GaAs p-n Junctions and Solar Energy Conversion,”Physical Review, vol. 101, pp. 1208-1209, 1956.
[27] M. A. Green, K. Emery, Y. Hishikawa, and W. Warta,“Solar Cell Efficiency Tables (Version 34), Progress in Photovoltaics: Research and Applications, vol. 17, pp. 320-326, 2009.
[28] D. C. Law, R. R. King, H. Yoon, M. J. Archer, A. Boca, C. M. Fetzer, S. Mesropian, T. Isshiki, M. Haddad, K. M. Edmondson, D. Bhusari, J. Yen, R. A. Sherif, H. A. Atwater, and N. H. Karam,“Future Technology Pathways of Terrestrial III-V Multijunction Solar Cells for Concentrator Photovoltaic Systems,”Solar Energy Materials and Solar Cells, vol. 94, pp. 1314-1318, 2010.
[29] T. Takamoto, E. Ikeda, H. Kurita, and M. Ohmori,“Over 30% Efficient InGaP/GaAs Tandem Solar Cells,”Applied Physics Letters, vol. 70, pp. 381-383, 1997.
[30] T. Takamoto, E. Ikeda, H. Kurita, M. Ohmori, M. Yamaguchi, and M. J. Yang,“Two-Terminal Monolithic In0.5Ga0.5P/GaAs Tandem Solar Cells with a High Conversion Efficiency of Over 30%,”Japanese Journal of Applied Physics, vol. 36, pp. 6215-6220, 1997.
[31] M. Yamaguchi, T. Takamoto, and K. Araki,“Super High-Efficiency Multi-Junction and Concentrator Solar Cells,”Solar Energy Materials and Solar Cells, vol. 90, pp. 3068-3077, 2006.
[32] R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam,“40% Efficient Metamorphic GaInP/GaInAs/Ge Multijunction Solar Cells,”Applied Physics Letters, vol. 90, 183516, 2007.
[33] W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth,“Current-Matched Triple-Junction Solar Cell Reaching 41.1% Conversion Efficiency under Concentrated Sunlight,”Applied Physics Letters, vol. 94, 223504, 2009.
[34] J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones,“40.8% Efficient Inverted Triple-Junction Solar Cell with Two Independently Metamorphic Junctions,”Applied Physics Letters, vol. 93, 123505, 2008.
[35] J. F. Geisz, S. R. Kurtz, M. W. Wanlass, J. S. Ward, A. Duda, D. J. Friedman, J. M. Olson, W. E. McMahon, T. E. Moriarty, and J. T. Kiehl,“High-Efficiency GaInP/GaAs/InGaAs Triple-Junction Solar Cells Grown Inverted with a Metamorphic Bottom Junction,”Applied Physics Letters, vol. 91, 023502, 2007.
[36] N. H. Karam, R. R. King, M. Haddad, J. H. Ermer, H. Yoon, H. L. Cotal, R. Sudharsanan, J. W. Eldredge, K. Edmondson, D. E. Joslin, D. D. Krut, M. Takahashi, W. Nishikawa, M. Gillanders, J. Granata, P. Hebert, B. T. Cavicchi, D. R. Lillington,“Recent Developments in High-Efficiency Ga0.5In0.5P/GaAs/Ge Dual- and Triple- junction Solar Cells: Steps to Next-Generation PV Cells,”Solar Energy Materials and Solar Cells, vol. 66, pp. 453-466, 2001.
[37] D. J. Friedman, J. F. Geisz, S. R. Kurtz, and J. M. Olson,“1-eV Solar Cells with GaInNAs Active Layer,”Journal of Crystal Growth, vol. 195, pp.409-415, 1998.
[38] M. Yamaguchi, K.-I. Nishimura, T. Sasaki, H. Suzuki, K. Arafune, N. Kojima, Y. Ohsita, Y. Okada, A. Yamamoto, T. Takamoto, and K. Araki,“Novel Materials for High-Efficiency III-V Multi-Junction Solar Cells,”Solar Energy, vol. 82, pp. 173–180, 2008.
[39] M. Stan, D. Aiken, B. Cho, A. Cornfeld, V. Ley, P. Patel, P. Sharps, and T. Varghese,“High-Efficiency Quadruple Junction Solar Cells Using OMVPE with Inverted Metamorphic Device Structures,”Journal of Crystal Growth, vol. 312, pp. 1370–1374, 2010.
[40] R. R. King, R. A. Sherif, G. S. Kinsey, S. R. Kurtz, C. M. Fetzer, K. M. Edmondson, D. C. Law, H. L. Cotal, D. D. Krut, J. H. Ermer, and N. H. Karam,“Bandgap Engineering in High-Efficiency Multijunction Concentrator Cells,”International Conference on Solar Concentrators for the Generation of Electricity or Hydrogen, NREL/CD-520-38172.
[41] M. J. Archer, D. C. Law, S. Mesropian, M. Haddad, C. M. Fetzer, A. C. Ackerman, C. Ladous, R. R. King, and H. A. Atwater,“GaInP/GaAs Dual Junction Solar Cells on Ge/Si Epitaxial Templates,”Applied Physics Letters, vol. 92, 103503, 2008.
[42] J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. R. Kurtz,“Superior Radiation Resistance of In1-xGaxN Alloys: Full-Solar-Spectrum Photovoltaic Material System,”Journal of Applied Physics, vol. 94, pp. 6477-6482, 2003.
[43] B. C. Chung, G. F. Virshup, and J. C. Schultz,“27.6% (1-Sun, Air Mass 1.5G) Monolithic Two-Junction AlGaAs/GaAs Solar Cell and 25% (1-Sun, Air Mass 0) Three-Junction AlGaAs/GaAs/InGaAs Cascade Solar Cell,”Proceedings of the 21st IEEE Photovoltaic Specialists Conference, pp. 179–183, 1990.
[44] J. M. Olson, S. R. Kurtz, A. E. Kibbler, and P. Faine,“A 27.3% Efficient Ga0.5In0.5P/GaAs Tandem Solar Cell,” Applied Physics Letters, vol. 56, pp. 623-625, 1990.
[45] J. M. Olson, D. J. Friedman and S. R. Kurtz,“High-Efficiency III-V Multijunction Solar Cells,”in Handbook of Photovoltaic Science and Engineering, edited by A. Luque and S. Hegedus, Ch.9, pp. 359-411, John Wiley & Sons, 2003.
[46] M.-J. Yang, M. Yamaguchi, T. Takamoto, E. Ikeda, H. Kurita, and M. Ohmori,“Photoluminescence Analysis of InGaP Top Cells for High-Efficiency Multi-Junction Solar Cells,”Solar Energy Materials and Solar Cells, vol. 45, pp. 331-339, 1997.
[47] H. Kurita, T. Takamoto, E. Ikeda, and M. Ohmori,“High-Efficiency Monolithic InGaP/GaAs Tandem Solar Cells with Improved Top-Cell Back-Surface-Field Layers,”Proceedings of the 7th International Conference on Indium Phosphide and Related Materials, pp. 516-519, 1995.
[48] K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki,“Evaluation of InGaP/InGaAs/Ge Triple-Junction Solar Cell and Optimization of Solar Cell’s Structure Focusing on Series Resistance for High-Efficiency Concentrator Photovoltaic Systems,”Solar Energy Materials and Solar Cells, vol. 90, pp. 1308-1321, 2006.
[49] J. L. Gray,“The Physics of the Solar Cell,”in Handbook of Photovoltaic Science and Engineering, edited by A. Luque and S. Hegedus, Ch.3, pp. 61-112, John Wiley & Sons, 2003.
[50] J. Nelson,“The physics of solar cells,”Imperial College Press, 2003.
[51] 蕭錫鍊,“半導體太陽電池元件原理,” 收錄於太陽電池,黃惠良、曾百亨編輯,第二章,pp. 15-136,五南圖書,2008。
[52] Keith Emery,“Measurement and Characterization of Solar Cells and Modules,”in Handbook of Photovoltaic Science and Engineering, edited by A. Luque and S. Hegedus, Ch.16, pp. 701-752, John Wiley & Sons, 2003.
[53] H. M. Manasevit,“Single-Crystal Gallium Arsenide on Insulating Substrates,”Applied Physics Letters, vol. 12, pp. 156-159, 1968.
[54] H. M. Manasevit and W. I. Simpson,“The Use of Metal-Organics in the Preparation of Semiconductor Materials,”Journal of the Electrochemical Society, vol. 116, pp. 1725-1732, 1969.
[55] G. B. Stringfellow,“Organometallic Vapor-Phase Epitaxy - Theory and Practice,”2nd Edition, Academic Press, 1999.
[56] A. K. Furr,“CRC Handbook of Laboratory Safety,”5th Edition, CRC Press, 2000.
[57] W. Stolz,“Alternative N-, P- and As-Precursors for III/V-Epitaxy,”Journal of Crystal Growth, vol. 209, pp. 272-278, 2000.
[58] I. García, B. Galiana, I. Rey-Stolle and C. Algora,“MOVPE Technology for the Growth of III-V Semiconductor Structures,”Proceedings of the 2007 IEEE Spanish Conference on Electron Devices, pp. 17-20, 2007.
[59] A. G. Thompson,“MOCVD Technology for Semiconductors,”Materials Letters, vol. 30, pp. 255-263, 1997.
[60] M. A. Herman, W. Richter, and H. Sitter,“Metal Organic Vapor Phase Epitaxy,”in Epitaxy - Physical Principles and Technical Implementation, Ch.8, pp.171-200, Springer, 2004.
[61] S. R. Kurtz, J. M. Olson, D. J. Friedman, J. F. Geisz, A. E. Kibbler, and K. A. Bertness,“Passivation of Interfaces in High-Efficiency Photovoltaic Devices,”Proceedings of Materials Research Society’s Spring Meeting, 1999.
[62] T. Takamoto,“InGaP/GaAs tandem solar cells,”in InP and Related Compounds - Materials, Applications, and Devices, edited by M. O. Manasreh, Ch.16, pp. 787-837, Gordon and Breach Science Publishers, 2000.
[63] I. García, I. Rey-Stolle, B. Galiana, and C. Algora,“Analysis of Tellurium as n-Type Dopant in GaInP: Doping, Diffusion, Memory Effect and Surfactant Properties,”Journal of Crystal Growth, vol. 298, pp. 794-799, 2007.
[64] G. L. Snider,“1D Poisson/Schrödinger User's Manual - a Band Diagram Calculator (available with freeware program together),”http://www.nd.edu/~gsnider/.
[65] G. L. Snider, I.-H. Tan, and E. L. Hu,“Electron States in Mesa-Etched One-Dimensional Quantum Well Wires,”Journal of Applied Physics, vol. 68, pp. 2849-2853, 1990.
[66] I.-H. Tan, G. L. Snider, and E. L. Hu,“A Self-Consistent Solution of Schrödinger-Poisson Equations Using a Nonuniform Mesh,”Journal of Applied Physics, vol. 68, pp. 4071-4076, 1990.
[67] Y. Mols,“Metamorphic InGaP/InGaAs Multijunction Solar Cells on Germanium Substrates,”Ph.D. Dissertation, Katholieke Universiteit Leuven, 2008.
[68] C. T. H. F. Liedenbaum, A. Valster, A. L. G. J. Severens, and G. W.’t Hooft,“Determination of the GaInP/AlGaInP Band Offset,”Applied Physics Letters, vol. 57, pp. 2698-2700, 1990.
[69] X. H. Zhang, S. J. Chua, and W. J. Fan,“Band Offsets at GaInP/AlGaInP(001) Heterostructures Lattice Matched to GaAs,”Applied Physics Letters, vol. 73, pp. 1098-1100, 1998.
[70] M. O. Watanabe and Y. Ohba,“Interface Properties for GaAs/InGaAlP Heterojunctions by the Capacitance-Voltage Profiling Technique,”Applied Physics Letters, vol. 50, pp. 906-908, 1987.
[71] M. D. Dawson and G. Duggan, “Exciton Localization Effects and Heterojunction Band Offset in (Ga,In)P-(Al,Ga,In)P Multiple Quantum Wells,”Physical Review B, vol. 47, pp. 12598-12604, 1993.
[72] S. M. Sze,“Semiconductor Devices: Physics and Technology, 2nd Edition,”John Wiley & Sons, 2002.
[73] D. P. Bour,“AlGaInP Quantum Well Lasers,”in Quantum Well Lasers, edited by P. S. Zory, Jr., Ch.9, pp. 415-460, Academic Press, 1993.
[74] R. B. Capaz, and B. Koiller,“Partial-Ordering Effects in InxGa1-xP,”Physical Review B, vol. 47, pp. 4044-4047, 1993.
[75] M. Zorn, P. Kurpas, A. I. Shkrebtii, B. Junno, A. Bhattacharya, K. Knorr, M. Weyers, L. Samuelson, J. T. Zettler, and W. Richter,“Correlation of InGaP(001) Surface Structure During Growth and Bulk Ordering,”Physical Review B, vol. 60, pp. 8185-8190, 1999.
[76] Y. Zhang, A. Mascarenhas, and L.-W. Wang,“Dependence of the Band Structure on the Order Parameter for Partially Ordered GaxIn1-xP Alloys,”Physical Review B, vol. 63, 201312, 2001.
[77] I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan,“Band Parameters for III–V Compound Semiconductors and Their Alloys,”Journal of Applied Physics, vol. 89, pp. 5815-5875, 2001.
[78] S. Ozaki, S. Adachi, M. Sato, and K. Ohtsuka,“Ellipsometric and Thermoreflectance Spectra of (AlxGa1-x)0.5In0.5P Alloys,”Journal of Applied Physics, vol. 79, pp. 439-445, 1996.
[79] D. J. Mowbray, O. P. Kowalski, M. Hopkinson, M. S. Skolnick, and J. P. R. David,“Electronic Band Structure of AlGaInP Grown by Solid‐Source Molecular‐Beam Epitaxy,”Applied Physics Letters, vol. 65, pp. 213-215, 1994.
[80] S. P. Najda, A. H. Kean, M. D. Dawson, and G. Duggan,“Optical Measurements of Electronic Bandstructure in AlGaInP Alloys Grown by Gas Source Molecular Beam Epitaxy,”Journal of Applied Physics, vol. 77, pp. 3412-3415, 1995.
[81] O. P. Kowalski, J. W. Cockburn, D. J. Mowbray, M. S. Skolnick, R. Teissier, and M. Hopkinson,“GaInP–AlGaInP Band Offsets Determined from Hydrostatic Pressure Measurements,”Applied Physics Letters, vol. 66, pp. 619-621, 1995.
[82] I. Mártil and G. G. Díaz, “Determination of the Dark and Illuminated Characteristic Parameters of a Solar Cell from I-V Characteristics,”European Journal of Physics, vol. 13, pp. 193-197, 1992.
[83] S. R. Kurtz, D. J. Friedman, J. Geisz, and W. McMahon,“Using MOVPE Growth to Generate Tomorrow’s Solar Electricity,”Journal of Crystal Growth, vol. 298, pp. 748-753, 2007.
[84] T. Takamoto, Ph.D. dissertation, Toyota Technological Institute, 1999, cited by M. Yamaguchi, III–V Compound Multi-Junction Solar Cells: Present and Future, Solar Energy Materials and Solar Cells, vol. 90, pp. 3068-3077, 2006.
[85] D. J. Friedman, S. R. Kurtz, A. E. Kibbler, and J. M. Olson,“Back Surface Fields for GaInP2 Solar Cells,”Proceedings of the 22nd IEEE Photovoltaic Specialists Conference, pp. 358–360, 1991.
[86] N. H. Rafat, S. M. Bedair, P. R. Sharps, J. S. Hills, J. A. Hancock, and M. L. Timmons,“Back Surface Fields for n/p and p/n GaInP Solar Cells,”Proceedings of the 1st World Conference on Photovoltaic Energy Conversion, vol. 2, pp. 1906-1909, 1994.
[87] R. R. King, P. C. Colter, K. M. Edmondson, D. C. Law, A. P. Stavrides, H. Yoon, J. H. Ermer, M. J. Romero, and N. H. Karam,“High-Efficiency Metamorphic GaInP/GaInAs/Ge Solar Cells Grown by MOVPE,”Journal of Crystal Growth, vol. 261, pp.341-348, 2004.
[88] A. W. Bett, R. Adelhelm, C. Agert, R. Beckert, F. Dimroth and U. Schubert,“Advanced III–V Solar Cell Structures Grown by MOVPE,”Solar Energy Materials and Solar Cells, vol. 66, pp. 541-550, 2001.
[89] I. García, I. Rey-Stolle, B. Galiana, and C. Algora,“A 32.6% Efficient Lattice-Matched Dual-Junction Solar Cell Working at 1000 Suns,”Applied Physics Letters, vol. 94, 053509, 2009.
|