參考文獻 |
References
1. Maniatis, T. and R. Reed, An extensive network of coupling among gene
expression machines. Nature, 2002. 416(6880): p. 499-506.
2. Keller, W. and L. Minvielle-Sebastia, A comparison of mammalian and yeast
pre-mRNA 3'-end processing. Curr Opin Cell Biol, 1997. 9(3): p. 329-36.
3. Zarudnaya, M.I., et al., Downstream elements of mammalian pre-mRNA
polyadenylation signals: primary, secondary and higher-order structures.
Nucleic Acids Res, 2003. 31(5): p. 1375-86.
4. Liu, H., et al., An in-silico method for prediction of polyadenylation signals in
human sequences. Genome Inform, 2003. 14: p. 84-93.
5. Tian, B., et al., A large-scale analysis of mRNA polyadenylation of human and
mouse genes. Nucleic Acids Res, 2005. 33(1): p. 201-12.
6. Dreyfus, M. and P. Regnier, The poly(A) tail of mRNAs: bodyguard in
eukaryotes, scavenger in bacteria. Cell, 2002. 111(5): p. 611-3.
7. Touriol, C., et al., Expression of human fibroblast growth factor 2 mRNA is
post-transcriptionally controlled by a unique destabilizing element present in
the 3'-untranslated region between alternative polyadenylation sites. J Biol
Chem, 1999. 274(30): p. 21402-8.
8. Knirsch, L. and L.B. Clerch, A region in the 3' UTR of MnSOD RNA enhances
translation of a heterologous RNA. Biochem Biophys Res Commun, 2000.
272(1): p. 164-8.
9. Kislauskis, E.H., X.C. Zhu, and R.H. Singer, Sequences Responsible for
Intracellular-Localization of Beta-Actin Messenger-Rna Also Affect Cell
Phenotype. Journal of Cell Biology, 1994. 127(2): p. 441-451.
10. Chiu, K.P., et al., PET-Tool: a software suite for comprehensive processing
and managing of Paired-End diTag (PET) sequence data. BMC
Bioinformatics, 2006. 7: p. 390.
11. Bennett, C.L., et al., A rare polyadenylation signal mutation of the FOXP3
gene (AAUAAA -> AAUGAA) leads to the IPEX syndrome. Immunogenetics,
2001. 53(6): p. 435-439.
12. Brown, P.H., L.S. Tiley, and B.R. Cullen, Efficient Polyadenylation within the
Human-Immunodeficiency-Virus Type-1 Long Terminal Repeat Requires
Flanking U3-Specific Sequences. Journal of Virology, 1991. 65(6): p.
3340-3343.
13. Carswell, S. and J.C. Alwine, Efficiency of utilization of the simian virus 40
late polyadenylation site: effects of upstream sequences. Mol Cell Biol, 1989.
9(10): p. 4248-58.
14. Hall-Pogar, T., et al., Alternative polyadenylation of cyclooxygenase-2.
Nucleic Acids Res, 2005. 33(8): p. 2565-79.
15. Valsamakis, A., et al., The Human-Immunodeficiency-Virus Type-1
Polyadenylylation Signal - a 3' Long Terminal Repeat Element Upstream of
the Aauaaa Necessary for Efficient Polyadenylylation. Proceedings of the
National Academy of Sciences of the United States of America, 1991. 88(6): p.
2108-2112.
16. Legendre, M. and D. Gautheret, Sequence determinants in human
polyadenylation site selection. BMC Genomics, 2003. 4(1): p. 7.
17. Salamov, A.A. and V.V. Solovyev, Recognition of 3'-processing sites of
human mRNA precursors. Comput Appl Biosci, 1997. 13(1): p. 23-8.
18. Tabaska, J.E. and M.Q. Zhang, Detection of polyadenylation signals in human
DNA sequences. Gene, 1999. 231(1-2): p. 77-86.
19. Cheng, Y., R.M. Miura, and B. Tian, Prediction of mRNA polyadenylation
sites by support vector machine. Bioinformatics, 2006. 22(19): p. 2320-5.
20. Chen, F., C.C. Macdonald, and J. Wilusz, Cleavage Site Determinants in the
Mammalian Polyadenylation Signal. Nucleic Acids Research, 1995. 23(14): p.
2614-2620.
21. Chang, T.H., J.T. Horng, and H.D. Huang, RNALogo: a new approach to
display structural RNA alignment. Nucleic Acids Res, 2008. 36(Web Server
issue): p. W91-6.
22. Beaudoing, E., et al., Patterns of variant polyadenylation signal usage in
human genes. Genome Res, 2000. 10(7): p. 1001-10.
23. Lee, J.Y., et al., PolyA_DB 2: mRNA polyadenylation sites in vertebrate genes.
Nucleic Acids Res, 2007. 35(Database issue): p. D165-8.
24. Tzanis, G., I. Kavakiotis, and I. Vlahavas, Polyadenylation Site Prediction
Using Interesting Emerging Patterns. IEEE International Conference on
BioInformatics and BioEngineering, 2008. 8.
|