博碩士論文 975202060 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:18.117.105.40
姓名 鄧博騰(Bo-Teng Deng)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 在車載隨意網路中以乘客為基底之調適性交通號誌系統
(Study of Passenger-based Adaptive Traffic Signal System in VANETs)
相關論文
★ 無線行動隨意網路上穩定品質服務路由機制之研究★ 應用多重移動式代理人之網路管理系統
★ 應用移動式代理人之網路協同防衛系統★ 鏈路狀態資訊不確定下QoS路由之研究
★ 以訊務觀察法改善光突發交換技術之路徑建立效能★ 感測網路與競局理論應用於舒適性空調之研究
★ 以搜尋樹為基礎之無線感測網路繞徑演算法★ 基於無線感測網路之行動裝置輕型定位系統
★ 多媒體導覽玩具車★ 以Smart Floor為基礎之導覽玩具車
★ 行動社群網路服務管理系統-應用於發展遲緩兒家庭★ 具位置感知之穿戴式行動廣告系統
★ 調適性車載廣播★ 車載網路上具預警能力之車輛碰撞避免機制
★ 應用於無線車載網路上之合作式交通資訊傳播機制以改善車輛擁塞★ 智慧都市中應用車載網路以改善壅塞之調適性虛擬交通號誌
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來,車載隨意網路(Vehicular Ad-hoc Networks, 簡稱VANETs)以及智慧型運輸系統(Intelligent Transport Systems, 簡稱ITS)的研究如火如荼地展開。其中車載隨意網路之相關研究議題又分為安全性(safety)以及相關加值服務應用(service)兩大部分。在相關應用部分,要如何讓行駛中的車輛與乘客,能夠在更短的時間內安全地到達目的地,一直是許多研究人員日以繼夜想要達成的目標。而利用車輛上的車載元件(OBU)與道路基礎建設(RSU)之間的無線網路通訊,來交換即時的交通資訊,並且利用道路基礎建設調整交通號誌的週期,便是一個達成此目標的方法。然而目前的相關研究,所衡量的參考依據大部分皆為車輛的數目與延遲時間,卻忽略了車輛上的乘客,才是交通工具所需服務的對象。
本論文所提出的以乘客為基底之調適性交通號誌系統,是以車上的乘客數目為主要的參考依據,藉由OBU統計車輛上的乘客數量、廢氣排放與燃料消耗量,將此資訊回報給RSU,作為調整交通號誌的依據。並且讓RSU扮演控制交通號誌的角色,所欲達成的目標為在同樣或是更短的時間內,讓更多的乘客可以通過十字路口到達目的地,並且降低乘客的延遲。此外,現代的環保意識日益高漲,要如何降低車輛行駛所造成的廢氣排放和燃料消耗,也是一個值得研究的議題。本論文也將車輛的廢氣排放與燃料消耗量納入考量,將此兩項數據作為控制交通號誌的依據,藉由每台車輛上的OBU將這些資訊同時回報給RSU,以便達成更有利之交通號誌控制。
最後本論文利用模擬實驗的方式,將此機制施行前後所造成影響進行分析。在乘客延遲部份最少可以降低10.5%;於廢氣排放與燃料消耗量平均可以改善2.5%;車輛行駛等待次數最多可以降低18.53%。除了可以降低上述所提之衡量指標外,並可以增加交通號誌對車輛與乘客的服務率,讓更多的車輛與乘客能夠更快速地達到目的地。
摘要(英) In recent years, a lot of researches about Vehicular Ad-hoc Networks (VANETs) and Intelligent Transport System (ITS) have been developed. The related researches in VANETs are mainly focus on safety and applications. How to service more vehicles and passengers and shorten traveling time is a major challenge issues that researchers need to solve. It is feasible to achieve aforementioned goal by using inter-vehicle communication (V2V) or vehicle to infrastructure communication (V2I) to exchange real-time traffic information and adjust traffic signal cycle by infrastructure. However, there are many related research only taking number of vehicles into consideration while ignoring the passengers on vehicles is the most important factor.
To solve shortcomings in existing solution, a passenger based traffic signal control mechanism is proposed in the thesis. In our proposal, traffic control factor is according to the number of passengers on vehicle, pollutant emission and fuel consumption. On board unit (OBU) equipped inside vehicle is utilized to gather vehicle’s information such as the number of passengers on vehicle, pollutant emission and fuel consumption. The collected messages are transmitted to road side unit (RSU) and we make RSU as traffic signal control agent to adjust traffic signal cycle in order to transport more passenger to their destination. The main objectives of the thesis is to propose a new traffic signal control mechanism to reduce passenger transportation time and decrease vehicles’ fuel consumption and pollutant emission.
We conduct simulation to examine our proposal and simulation results show the significant improvement of proposed mechanism when compared with disable our proposal. The comparative indexes are average passenger delay, vehicle delay, fuel consumption, pollutant emission and number of stop times. It can reduce average passenger delay at least 10.5% and average vehicle’s stop times at most 18.53%. In addition, the proposed mechanism can improve usage of fuel consumption at average 2.5%.
關鍵字(中) ★ 調適性交通號誌系統
★ 車載網路
★ 乘客延遲
關鍵字(英) ★ Adaptive Traffic Signal
★ Passenger Delay
★ VANET
論文目次 Chapter 1. 緒論 1
1.1. 車載隨意網路 1
1.2. 智慧型運輸系統 3
1.3. 調適性交通號誌系統 4
1.4. 車用資訊服務系統 5
1.5. 研究動機與目標 6
1.6. 論文架構 7
Chapter 2. 相關背景與研究 8
2.1. 調適性交通號誌系統 8
2.1.1. 單一十字路口 8
2.1.2. 多個十字路口 9
2.2. 乘客延遲時間 10
2.3. 燃料消耗與廢氣排放 11
2.4. 結論與比較 11
Chapter 3. 以乘客為基底之調適性 交通號誌控制機制 13
3.1. 假設 13
3.2. 以乘客為基底之調適性交通號誌控制機制 14
3.2.1. 單一獨立的十字路口 20
3.2.2. 綠燈號誌時間延長或中斷 22
3.2.3. 下一交通循環綠燈時間之計算 27
3.2.4. 多個聯結的十字路口 31
3.2.5. 車流警示機制 32
Chapter 4. 模擬實驗與結果 35
4.1. 模擬參數與測量指標 35
4.2. Experiment 1: 車輛數之多寡對單一十字路口之影響 37
4.3. Experiment 2: 公共汽車佔有比例對單一十字路口之影響 41
4.4. Experiment 3: 綠燈號誌時間長度對單一十字路口之影響 45
4.5. Experiment 4: 加權指數對單一十字路口之影響 48
4.6. Experiment 5: 車流警示機制對多個十字路口之影響 50
4.7. Experiment 6: 車流警示機制對實際環境之影響 54
Chapter 5. 結論與未來展望 58
參考文獻 61
參考文獻 [1] B. Stiller, “Telecommunication Economics – Overview of the Field, Recommendations, and Perspectives,” Computer Science - Research and Development, vol. 23, no. 1, pp. 35 – 43, Mar. 2009.
[2] V. Gradinescu, C. Gorgorin, R. Diaconescu, V. Cristea and L. Iftode, “Adaptive Traffic Lights Using Car-to-Car Communication,” Proceeding of the 65th IEEE Vehicular Technology Conference(VTC), Dublin, Ireland, pp.21-25, Apr. 2007.
[3] N.B. Hounsell, B.P. Shrestha, J. R. Head, S. Palmer and T. Bowen, “The Way Ahead for London’s Bus Priority at Traffic Signals,” Intelligent Transport Systems (IET), vol. 2, issue 3, pp. 193-200, Sep. 2008.
[4] M. Tubaishat, Y. Shang and H. Shi, “Adaptive Traffic Light Control with Wireless Sensor Networks,” Proceeding of the 4th IEEE Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, USA, pp. 187-191. Jan. 2007.
[5] F. Zou, B. Yang and Y. Cao, “Traffic Light Control for a Single Intersection Based on Wireless Sensor Network,” Proceeding of the 9th International Conference on Electronic Measurement & Instruments (ICEMI), Beijing, China, pp. 1040-1044, Aug. 2009.
[6] C. Han and Q. Zhang, “Real-Time Detection of Vehicles for Advanced Traffic Signal Control,” International Conference on Computer and Electrical Engineering (ICCEE), Phuket, Thailand, pp. 245-249, Dec. 2008.
[7] L.Y. Deng, H. C. Liang, C. T. Wang, C. S. Wang and L. P. Hung, “The Development of the Adaptive Traffic Signal Control System,” Proceeding of the 11th International Conference on Parallel and Distributed Systems(ICPADS), Fuduoka, Japan, vol. 2, pp. 634-638, Jul. 2005.
[8] W. Cheng, X. Liu and Y. Chen, “The Research on Optimal Green Time For Intersection Groups,” Proceeding of the 6th International Conference on Intelligent Systems Design and Applications (ISDA), Jinan, China, vol. 3, pp. 220-224, Oct. 2006.
[9] H. Su and W. Zhang, “The Dynamic Traffic Information Collection and Processing Methods of ITS Common Information Platform Based on Floating Car Technology,” International Seminar on Future BioMedical Information Engineering (FBIE), Wuhan, Hubei, China, pp. 156-159, Dec. 2008.
[10] G. Shen and X Kong, "Study on Road Network Traffic Coordination Control Technique with Bus Priority,” IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol. 39, Issue 3, pp. 343-351, May. 2009.
[11] A. Vinel, D. Staehle and A. Turlikov, “Study of Beaconing for Car-to-Car Communication in Vehicular Ad-Hoc Networks,” Proceeding of IEEE International Conference on Communications Workshops (ICC), Dresden, Deutschland, pp. 1-5, Jun. 2009.
[12] P. Mirchandani and F. Y. Wang, “RHODES to Intelligent Transportation Systems,” IEEE Intelligent Systems, vol. 20, issue 1, pp. 10-15, Jan. 2005.
[13] C. Priemer and B. Friedrich, “A Decentralized Adaptive Traffic Signal Control Using V2I Communication Data,” Proceeding of the 12th International IEEE Conference on Intelligent Transportation Systems (ITSC), St. Louis, Missouri, USA, pp. 1-6, Oct. 2009.
[14] C. Chen, C. K. Wong and B. Heydecker, "Adaptive Traffic Signal Control Using Approximate Dynamic Programming," Transportation Research Part C: Emerging Technologies, vol. 17, Issue 5, pp. 456-474, Oct. 2009.
[15] W. Bao, Q. Chen and X. Xu, “An Adaptive Traffic Signal Timing Scheme for Bus Priority at Isolated Intersection,” Proceeding of the 6th World Congress on Intelligent Control and Automation (WCICA), Dalian, China, vol. 2, pp. 8712-8716, Jun. 2006.
[16] W. Wen, "A dynamic and automatic traffic light control expert system for solving the road congestion problem," Expert Systems with Applications, vol. 34, Issue 4, pp. 2370-2381, May 2008.
[17] J. Zhang, L. Yan, Y. Han, G. Song and X. L. Fang, "Research on the Method and Simulation of Intersection Signal Control Based on Multi-Agent," International Conference on Management and Service Science (MASS), Wuhan, Hubei China, pp. 1-4, Sep. 2009.
[18] Z. Li, D. Sun, Z. Zhang and D. Xiao, "Control Mechanism Analysis of Small-Agent Networks Using a Distinguished Node Model for Urban Traffic Controls," IEEE Transactions on Automation Science And Engineering, vol.5, No.3, Jul. 2008.
[19] Y. T, Wu and C. H. Ho, “The Development of Taiwan Arterial Traffic-Adaptive Signal Control System and its Field Test: A Taiwan Experience,” Journal of Advanced Transportation, vol. 43, Issue 4, pp. 455 – 480, Jan. 2010.
[20] W. Wei, S. Gong and H. Liu, “A Coordinated Urban Traffic Signal Control Approach Based on Multi-Agent,” Proceedings of the IEEE 13th international conference on Intelligent Engineering Systems (INES), Barbados, pp. 243-247, Apr. 2009.
[21] X. Cheng and Z. Yang, “Distributed Traffic Signal Control Approach Based on Multi-agent,” Proceeding of the 6th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Tianjin, China, vol. 5, pp. 582-587, Aug. , 2009.
[22] H, Liu, H. Zuylen, H. Lint, Y. Chen and K. Zhang, “Prediction of Urban Travel Times with Intersection Delays,” Proceedings of the 8th International IEEE Conference on Intelligent Transportation Systems, Vienna, Austria, Sep. 2005.
[23] K. Long, “Bus Priority Signal Control at Isolated Intersection,” Proceeding of International Conference on Intelligent Computation Technology and Automation (ICICTA), Hunan, China, vol. 2, pp. 234-237, Oct. 2008.
[24] Y. Lin, S. Zhao and J. Zhao, “Bus Signal Priority Strategy for Reducing Passenger Delays,” Proceeding of the Second International Conference on Intelligent Computation Technology and Automation (ICICTA), Changsha, Hunan, China, vol. 3, pp. 519-522, Oct. 10-11, 2009.
[25] Y. Zhao and L. Cao, “Method of Signal Timing Based on Bus Priority,” International Workshop on Intelligent Systems and Applications (ISA), Wuhan, China, pp. 1-3, May, 2009.
[26] P. Zito, “Influence of coordinated traffic lights parameters on roadside pollutant concentrations,” Transportation Research Part D: Transport and Environment, vol. 14, Issue 8, pp. 604-609, Dec. 2009.
[27] R. Akcilek and M. Besley, “Operating Cost, Fuel Consumption and Emission Models in aaSIDRA and aaMotion,” Proceeding of the 25th conference of Australian Institutes of Transport Research (CAITR), Adelaide, Australia, Dec. 2003.
[28] K. Collins and G. -M. Muntean, “A Vehicle Route Management Solution Enabled by Wireless Vehicular Networks,” IEEE INFOCOM Workshops, Phoenix, AZ, USA, pp 1-6, Apr. 13-18, 2008.
[29] Y. Peng and X. Wang, "Research on a Vehicle Routing Schedule to Reduce Fuel Consumption," Proceeding of International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), Hunan, China, Apr. 11-12, 2009.
[30] C. Sommer, R. Krul, R. German and F. Dressler, “Emissions vs. Travel Time: Simulative Evaluation of the Environmental Impact of ITS,” Proceeding of the 71st IEEE Vehicular Technology Conference (VTC), Taipei, Taiwan, pp. 1-5, May, 2010.
[31] NCTUns 6.0 Network Simulator and Emulator, http://nsl.csie.nctu.edu.tw/ nctuns.html
[32] S.Y. Wang and C.L. Chou, “NCTUns Tool for Wireless Vehicular Communication Network Researches,” Simulation Modelling Practice and Theory, vol. 17, No. 7, pp. 1211-1226, Aug. 2009.
[33] S.Y. Wang, C.L. Chou, and C.C. Lin, “The GUI User Manual for the NCTUns 6.0 Network Simulator and Emulator,” http://nsl10.csie.nctu.edu.tw/support/ documentation/GUIManual.pdf
[34] S.Y. Wang, C.L. Chou, C. C. Lin, and C.H. Huang, “The Protocol Developer Manual for the NCTUns 6.0 Network Simulator and Emulator,” http://nsl10.csie.nctu.edu.tw/support/documentation/DeveloperManual.pdf
[35] Department for Transport: The Valuation of Time Savings’ in ‘Design Manual for Roads and Bridges, vol. 13: The COBA Manual, Part 2 Chapter 1’. The Stationary Office, London, May 2002.
[36] IEEE 1609 - Family of Standards for Wireless Access in Vehicular Environments (WAVE), http://www.standards.its.dot.gov/fact_sheet.asp?f=80
[37] Random Waypoint Model,(rwp-model) http://www.netlab.tkk.fi/~esa/java/rwp/rwp-model.shtml
[38] E. Lieberman and A. K. RATHI, Traffic Flow Theory, Version 1, Turner Fairbank Highway Research Center, 1992.
指導教授 周立德(Li-Der Chou) 審核日期 2010-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明