博碩士論文 975302002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:18.119.107.208
姓名 簡維皇(Wei_huang Chien)  查詢紙本館藏   畢業系所 通訊工程學系在職專班
論文名稱 用於路口查驗贓車的車牌辨識系統
(A License Plate Recognition System for Finding out the Stolen Vehicles)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本論文中,我們發展用於路口查驗贓車的車牌辨識系統。整個系統包括了車牌定位、車牌分類、字元切割、及字元辨識。主要的特色有:(i) 適應性二值化。(ii) 利用字元的相關性做車牌定位。(iii) 利用車牌的顏色做車牌分類。(iv) 字元寬度相關的字元切割。
在適應性二值化中,為了因應環境光線的變化,我們利用拍攝影像取樣點的灰階平均來選擇二值化門檻值。而車牌定位,因為車牌的字元間都有一定的間距,所以我們利用車牌字元的相關聯性來做定位。也就是用車牌字元邊的連續性來找影像中車牌位置。車牌的分類,我們先找出車牌背景與字元的像素位置。然後再分別利用車牌背景像素與車牌字元像素的RGB各別平均值、RGB各別最大值、與整個車牌影像的灰階平均值判斷車牌背景與字元的顏色,並做車牌分類。車牌字元切割,主要是利用連結區塊 (connected component) 並參考車牌類別做字元切割。當切割出來的字元寬度大於一個字元寬度時,則判斷此字元影像有兩個字元以上的連結,我們會按照其連結字元的寬度來平均切割。
摘要(英) In this thesis, we develop a license plate recognition system for finding out the stolen vehicles. The proposed system consists of four stages: license plate location, license plate classification, character segmentation, and character recognition. The major properties of the proposed system are (i) Adaptive bi-level thresholding. (ii) License plate locating based on the short horizontal distances between characters in the license plate. (iii) License plate classifying based on the colors of characters and background in the license plate. (iv) Character segmenting based on the width of characters on the license plate and the types of license plates.
In the adaptive bi-level thresholding, we utilize the average of gray levels which were sampled from images to define the threshold value for bi-level thresholding. The characters on a license plate have a fixed distance, so we utilize the property to locate license plates. This means that we could utilize the clustering property of the horizontal scanning lines between characters in a license plate to detect the license plate. In the license plate classification, we extract the colors of pixels on characters and background. Then we calculate the average and maximum RGB values of the background pixels and the average gray levels of the character pixels and background pixels, respectively. We utilize those values to classify the license plates. In the character segmentation, we utilize the connected components and license plate types to segment characters. If the width of a segmented character is greater than the pre-defined width statistics of characters, the segmented character will be separated into right and left parts.
關鍵字(中) ★ 車牌辨識 關鍵字(英) ★ License Plate Recognition
論文目次 摘要 i
銘謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 系統架構 2
1.3 論文架構 4
第二章 相關研究 5
2.1 影像前處理 5
2.1.1 影像二值化 5
2.1.2 車牌傾斜偵測與校正 6
2.2 車牌定位 7
2.3 車牌字元分割 9
2.4 車牌文字辨識 10
2.4.1 分類器分類法 10
2.4.2 統計分類法 10
2.4.3 樣板比對法 10
2.4.4 類神經網路 11
第三章 車牌影像前處理與定位 13
3.1 硬體架構 13
3.2 影像輸入處理 14
3.3 二值化門檻值計算 16
3.4 車牌定位 19
第四章 車牌分類、字元分割與辨識 23
4.1 車牌分類 23
4.2 字元切割 26
4.3 字元辨識 27
第五章 實驗結果 33
5.1 實驗環境 33
5.2 車牌定位 36
5.3 車牌分類 41
5.4 字元切割 44
5.5 字元辨識 46
5.6 討論 48
第六章 結論 50
參考文獻 51
參考文獻 [1] Bai, H.-L. and C.-P. Liu, “A hybrid license plate extraction method based on edge statistics and morphology,” in Proc. of the 17th Int. Conf. on Pattern Recognition, Cambridge, UK, Aug.23-26, 2004, vol.2, pp.831-834.
[2] Broumandnia, A. and M. Fathy, “Application of pattern recognition for farsi license plate recognition,” in Proc. of Int. Conf. Graphics, Vision and Image Processing, Cairo, Egypt, Dec.19-21, 2005, vol.5, pp.25-31.
[3] Brugge, M. H. Ter, J. H. Stevens, J. A. G. Nijhuis, and L. Spaanenburg, “License plate recognition using DTCNNs,” in Proc. of 5th IEEE Int. Workshop on Cellular Neural Networks and Their Applications Proceedings, London, UK, Apr.14-17, 1998, pp.212-217.
[4] Comelli, P., P. Ferragina, M. N. Granieri, and F. Stabile, “Optical recognition of motor vehicle license plates,” IEEE Trans. on Vehicular Technology, vol.44, no.4, pp.790-799, Nov. 1995.
[5] Draghici, S., “A neural network based artificial vision system for license plate recognition,” Int. Journal of Neural Systems, vol.8, pp.113-126, Feb. 1997.
[6] Gao, Q., X. Wang, and G. Xie, “License plate recognition based on prior knowledge,” in Proc. of IEEE Int. Conf. on Automation Logistics, Shandong, China, Aug.18-21, 2007, pp.2964-2968.
[7] Hasan, Y., and L. Karam, “Morphological text extraction from image,” IEEE Trans. on Image Processing, vol.9, no.11, pp.1978-1983, Nov. 2000.
[8] Hegt, H., R. de la Haye, and N. Khan, “A high performance license plate recognition system,” in Proc. of IEEE Int. Conf. on Systems, Man, and Cybernetics, Tokyo, Japan, Oct.12-15, 1999, vol.5, pp.4357-4362.
[9] Hermida, X. F., F. M. Rodriguez, J. L.F Lijo, F. P. Sande, and M. P. Iglesias, “A system for the automatic and real time recognition of V.L.P.’s (vehicle license plates),” Lecture Notes in Computer Science, vol.1311, pp.552-558, Jan. 1997.
[10] Hsieh, J.-W.,S.-H. Yu, and Y.-S. Chen, “Morphology-based license plate detection in images of differently illuminated and oriented cars,” Journal of Electronic Imaging, vol.11, no.4, pp.507-516, Oct. 2002.
[11] Hung, K.-C., C.-N. Shyi, J.-Y. Lee, and T.-C. Lee, “Robot location determination in a complex environment by multiple marks,” Pattern Recognition, vol.21, no.6, pp.567-580, 1988.
[12] Hussain, B. and M. R. Kabuka, “A novel features recognition neural network and its applications to character recognition,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol.16, no.1, pp.98-106, Jan. 1994.
[13] Juntanasub, R. and N. Sureerattanan, “Car license plate recognition through hausdorff distance technique,” in Proc. of IEEE 17th Int. Conf. on Tools with Artificial Intelligence, Hong Kong, China, Nov.14-16, 2005, pp.647-651.
[14] Kertesz, A., V. Kertesz, and T. Muller, “An on-line image processing system for registration number identification,” in Proc. of IEEE Int. Conf. on Neural Networks, Orlando, Florida, June 27-29, 1994, vol.6, pp.4145-4148.
[15] Lee, C.-H., K.-L. You, and Y.-P. Lin, “Dynamic real-time license plate recognition” Journal of Technology, vol.25, no.2, pp.151-165, Jun. 2010.
[16] Lisa, F., J. Carrabina, C. Perez-Vicente, N. Avellana, and E. Valderrama, “Two-bit weights are enough to solve vehicle license number recognition problem,” in Proc. of IEEE Int. Conf. on Neural Networks, San Francisco, California, Jul.10-16, 1993, vol.3, pp.1242-1246.
[17] Liu, X., S. Tan, and S. H. Ong, “Fuzzy pyramid scheme for distorted object recognition,” Pattern Recognition, vol.29, no.10, pp1631-1646, Oct. 1996.
[18] Lu, Y., “Machine printed character segmentation - an overview,” Pattern Recognition, vol.28, no.1, pp.67-80, Jan. 1995.
[19] Morns, I. P. and S. S. Dlay, “Character recognition using fourier descriptors and a new form of dynamic semi-supervised neural network,” Microelectronic Journal, vol.28, no.1, pp.73-84, Jan. 1997.
[20] Naito, T., T. Tsukada, K. Yamada, K. Kozuka, and S. Yamamoto, “Robust license-plate recognition method for passing vehicles under outside environment,” IEEE Trans. on Vehicular Technology, vol.49, no.6, pp.2309-2319, Nov. 2000.
[21] Otsu, N., “A threshold selection method from gray-level histograms,” IEEE Trans. on Systems, Man, and Cybernetics, vol.9, no.1, pp.62-66, Jan. 1979.
[22] Parisi, R., Di Claudio, E.D., G. Lucarelli, and G. Orlandi, “Car plate recognition by neural networks and image processing,” in Proc. of IEEE Int. Symp. on Circuits and Systems, Monterey, California, May 31-June 3, 1998, vol.3, pp.195-198.
[23] Qin, Z., S. Shi, J. Xu, and H. Fu, “Method of license plate location based on corner feature,” in Proc. of the 6th World congress on Intelligent Control and Automation, Dalian, China, June 21-23, 2006, pp.8645-8649.
[24] Rahman, C. A., W. Badawy, and A. Radmanesh, “A real time vehicle’s license plate recognition system,” in Proc. IEEE Conf. on Advanced Video and Signal Based Surveillance, Miami, FL, Jul.21-23, 2003, pp.163-166.
[25] Raus, M. and L. Kreft, “Reading car license plates by the use of artificial neural networks,” in Proc. of the 39th Midwest Symp. on Circuits and Systems, Ames, Iowa, Aug.18-21, 1996, vol.1, pp.538-541.
[26] Tindall, D. W., “Application of neural network techniques to automatic license plate recognition,” in Proc. of IEE European Convention on Security and Detection, Brighton, UK, May 16-18, 1995, pp.81-85.
[27] Viola, P. A. and M. Jones, “Robust real-time face detection,” Int. Journal of Computer Vision, vol.57, no.2, pp137-154, May 2004.
[28] Xu, J. F., S. F. Li, and M. S. Yu, “Car license plate extraction using color and edge information,” in Proc. of Int. Conf. on Machine Learning and Cybernetics, Shanghai, China, Aug.26-29, 2004, vol.6, pp.3904-3907.
[29] Yang, F. and Z. Ma, “Vehicle license plate location based on histogramming and mathematical morphology,” in Proc. of IEEE 4th Workshop on Automatic Identification Advanced Technologies, Buffalo, NY, Oct.17-18, 2005, pp.89-94.
[30] Yu, M. and Y.-D. Kim, “An approach to Korean license plate recognition based on vertical edge matching,” in Proc. of IEEE Int. Conf. on Systems, Man, and Cybernetics, Suwon, Korea, Oct.8-11, 2000, vol.4, no.8-11, pp.2975-2980.
[31] Zhang, H., W. Jia, X. He, and Q. Wu, “A fast algorithm for license plate detection in various conditions,” in Proc. of IEEE Int. Conf. on Systems, Man, and Cybernetics, Taipei, Taiwan, Oct.8-11, 2006, vol.3, pp.2420-2425.
[32] Zhang, Y. and C. Zhang, “A new algorithm for character segmentation of license plate,” in Proc. of IEEE Int. Conf. on Intelligent Vehicles Symp., Columbus, Ohio, June 9-11, 2003, pp.106-109.
指導教授 章定章(Din-chang Tseng) 審核日期 2011-7-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明