博碩士論文 982202009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.133.108.224
姓名 蘇嵩智(Sung-Chih Su)  查詢紙本館藏   畢業系所 物理學系
論文名稱 手徵性物體在低雷諾數攪拌流下的運動
(Motions of Chiral Objects Driven by the Stirring Flow at Low Reynolds Number)
相關論文
★ 庫倫作用粒子之動力學★ 帶電粒子在離子流中之交互作用
★ 肥皂膜上的能量耗散★ 紙片落下之行為研究
★ 外加場下肥皂膜的能量耗散★ 圓柱體在二維垂直肥皂膜之動力學
★ 螺旋狀物體在剪切流中的運動行為★ 二元高分子薄膜在平行電場下的相分離
★ 纖毛不對稱運動的模擬★ 肥皂膜流場中圓柱體之行為研究
★ 單向偶極子形成的柱狀結構與非均勻電解質的平均場理論★ 彈性懸掛棍在旋轉系統下之行為
★ 膠體球在電解質溶液中的擴散泳★ 細長彈性桿在旋轉下的非線性動力行為與動態穩定性分析
★ Thermophoresis and Diffusiophoresis in Brownian Simulation with Velocity Distribution Function★ 剛體球在不對稱垂直震盪系統中的動力學行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 分離具有相反手徵性的分子在工業及科學上是很重要的。ㄧ個物
體若是與自己的鏡像是不同的結構即是有手徵性,且被稱為對掌
異構物。流體力學提供了ㄧ個不牽涉化學反應的方法,用以分離
相反手徵性物體。流場是可以提供給相反的力給相反手徵性的物
體的。近來相關的研究著重於剪切流給予不同手徵性的對掌異構
物的不同效果,而忽略它們之間的交互作用。那些交互作用在稀
溶液下不是那麼重要的。
為了要直接觀察手徵性物體間的交互作用,我們建造了ㄧ個能夠
提供週期性攪拌流的系統來驅動手徵性物體。首先確認了相反手
徵性的單ㄧ物體的運動在此系統是ㄧ樣的。這樣的運動同時可以
藉由改變系統的溫度來調控。
在系統存在兩個物體的情況。個別物體的運動幾乎和僅存在單ㄧ
物體的情況是相同的,不論兩者的手徵性是相反或相同。在加熱
的過程中,兩物體的運動幾乎是不相關的。在降溫的過程中,不
同的是兩者傾向於有ㄧ樣大小的軌跡,而且相同手徵性的兩物體
會比相反手徵性的物體有著較小的相對距離。這意味著相同的手
徵物體之間,會有比相反手徵性的物體相對較大的吸引的交互作
用。
摘要(英) Separation of molecules with opposite chiralities is important topic in industry and science. An object, which is not identical to its mirror image, has chirality and is also called enantiomer. Hydrodynamic provided an alternative approach to separate chiral objects without chemical reaction. Fluid flows could apply opposite forces to objects with opposite chiralities. Recent researches about the chiral separation have focused on the difference of net effects which shear flows apply to enantiomers and neglect the interaction between objects which is not important in dilute solution.
In order to observe the interaction directly, we build a system providing a periodically stirring flow to drive chiral objects. It is first confirmed that single objects of opposite chiralities have the same motion in this system. The motions could also be controlled by heating or cooling of the system.
In the case of two objects, the individual motions of the objects in identical or opposite pairs are mostly the same with those of a single one. In heating process the motions of them are almost independent. On the other hand, they tend to have the same loop size in cooling process, and identical pair have smaller relative distance than opposite one. It implies that the identical pair has relatively large attractive interaction to each other than opposite one.
關鍵字(中) ★ 手徵性
★ 流體力學
★ 旋光性
★ 對掌性
★ 物質分離
關鍵字(英) ★ chirality
★ chiral separation
★ fluid dynamic
★ enantiomer
論文目次 中文摘要................................................................................................. i
abstract for english ................................................................................. ii
acknowlegement ...................................................................................... iii
Contents ................................................................................................. vi
List of gures.......................................................................................... vi
List of tables ........................................................................................... vii
Chapter 1 Introduction ........................................................................ 1
Chapter 2 Device and Methods............................................................ 5
2.1 Device....................................................................................... 5
2.1.1 The experimental setup ............................................. 5
2.1.2 The samples and two setups of the liquid.................. 6
2.2 Image processing ...................................................................... 9
2.2.1 Image correction of the refracted image..................... 9
2.2.2 The tracking program ................................................ 12
2.3 Data analysis............................................................................ 15
2.3.1 The rotating frame..................................................... 15
2.3.2 The loop size, revolving angle and spinning angle ........................................................................ 16
Chapter 3 Flow properties and Kinetic of the Object.......................... 18
3.1 Viscosity of the liquid............................................................... 18
3.2 Strong temperature dependence of the height of the sample
in a single liquid ....................................................................... 22
vi
3.3 Trajectories of samples with di erent intrinsic angles.............. 23
3.4 Induced surface tension between two objects ........................... 29
Chapter 4 Results and Discussions....................................................... 31
4.1 Parameters of the setup ........................................................... 31
4.2 Characteristics of trajectory..................................................... 31
4.2.1 The loop-like trajectory ............................................. 32
4.2.2 Symmetrical and asymmetrical pro les of the loop. .. 34
4.3 Dynamic of the loop................................................................. 37
4.3.1 Dynamic of single object............................................ 37
4.3.2 Dynamic of the loops of two objects at xed tem-
peratures .................................................................... 41
4.3.3 Dynamic of the loop of two objects in cooling process43
4.3.4 Dynamic of the loop of two objects in heating pro-
cess............................................................................. 45
4.3.5 Summary about the dynamic of loop sizes ................ 46
4.4 The revolving and spinning of the object................................. 48
4.4.1 The revolving velocity of object................................. 48
4.4.2 The spinning velocity of object.................................. 53
4.4.3 Coupling between revolving angle  and spinning
angle  ...................................................................... 56
4.4.4 Ratio of spinning velocity to revolving velocity ......... 60
4.5 Separation between the chiral pair ........................................... 63
4.5.1 Phase di erence of revolving angle ............................ 63
4.5.2 Synchronization of the spinning angles ...................... 67
Chapter 5 Conclusions ......................................................................... 69
Appendices ............................................................................................. 71
Chapter A Two Angular Velocities ....................................................... 71
A.1 Revolving of Objects ................................................................ 71
vii
A.2 Spinning of Objects .................................................................. 75
A.3 The average increment of de ned velocity in di erent loop size78
Chapter B Dynamic at low Reynolds number ...................................... 79
References ............................................................................................... 80
參考文獻 [1] E. M. Purcell. Life at low reynolds number. American Journal of Physics, 45(1), June 1977.
[2] N. A. Hill and T. J. Pedley. Bioconvection. Fluid Dynamics Research, 37:1{20, March 2005.
[3] T. J. Pedley and J. O. Kessler. Hydrodynamic phenomena in suspension of swimmer microoganisms. Annual Review Fluid Mechanics, 24:313{358, 1992.
[4] Jean-Luc Thi eault and Stephen Childress. Stirring by swimming bodies. Physic Letters A, 374:3487{3490, 2010.
[5] Zhi Lin, Jean-Luc Thi eault, and Stephen Childress. Stirring by squirmers. Journal of Fluid Mechanics, 669:167{177, February 2011.
[6] Knut Drescher, Raymond E. Goldstein, Nicolas Michel, Marco Polin, and Idan Tuval. Direct measurement of the low eld around swimming microorganisms. Physical Review Letters, 105(168101),2010.
[7] Knut Drescher, Kyriacos C. Leptos, Idan Tuval, Takuji Ishikawa, Timothy J. Pedley, and Raymond E. Goldstein. Dancing volvox: Hydrodynamic bound states of swimming algae. Physical Review Letters, 102(168101), 2009.
[8] Cristian A. Solari, Sujoy Ganguly, John O. Kessler, Richard E. Michod, and Raymond E. Goldstein. Multicellularity and the functional interdependence of motility and molecular transport. PANS,103(5):1353{1358, 2006.
[9] Martin B. Short, Cristian A. Solari, Sujoy Ganguly, Thomas R. Powers, John O. Kessler, and Raymond E. Goldstein. Flows driven by
agella of multicellular organisms enhance long-range molecular transport. PNAS, 103(22):8315{8319, May 2006.
[10] Ali Naja and Ramin Golestanian. Simple swimmer at low reynolds number: Three linked spheres. Physical Review E, 69(062901), June 2004.
[11] C. M. Pooley, G. P. Alexander, and J. M. Yeomans. Hydrodynamic interaction between two swimmers at low reynolds number. Physical Review Letters, 99(2281103), 2007.
[12] Takuji Ishikawa, M. P. simmonds, and T. J. Pedley. Hydrodynamic interaction of two swimming model micro-organisms. Journal of Fluid Mechanics, 568:119{160, 2006.
[13] Nicholas C. Darnton, Linda Turner, Svetlana Rojevsky, and Howard C. Berg. On torque and tumbling in swimming escherichia coli. Journal of Bacteriology, 189(5):1756{1764, March 2007.
[14] Magda Melchert and Alan List. The thalidomide saga. The International Journal of Biochemistry and Cell Biology, 39:1489{1499, January 2009.
[15] P. G. De Gennes. Mechanical selection of chiral crystals. Europhys. Lett., 46(6):827{831, June 1999.
[16] Masato Makino and Masao Doi. Migration of twisted ribbon-like particles in simple shear flow. Physics of fluids, 17(103605), October 2005.
[17] Masao Doi and Masato Makino. Motion of micro-particles of complex shape. Progress in polymer science, 30:876{884, August 2005.
[18] Peter Talkner, Gert-Ludwig Ingold, and Peter Hanggi. Transport of flexible chiral objects in a uniform transport of flexible chiral objects in a uniform shear flow. New journal of physics, 14(073006), February 2012.
[19] Peilong Chen and Chia-Hsin Chao. Lift forces of screws in shear flows. Physics of fluids, 19:017108, January 2007.
[20] A. V. Andreev, D. T. Son, and B. Spivak. Hydrodynamics of liquids of chiral molecules and suspensions containing chiral particles. Physical Review Letters, 104(198301), May 2010.
[21] Marcin Kostur, Michael Schindler, Peter Talkner, and Peter Hanggi. Chiral separation in microflows.
Physical Review Letters, 96(4), January 2006.
[22] Marcos, Henry C. Fu, Thomas R. Powers, and Roman Stocker. Separation of microscale chiral objects by shear flow. Physical Review Letters, 102:158103, April 2009.
[23] Lukas Bogunovic, Marc Fliedner, Ralf Eichhorn, Sonja Wegener, and Jan Regtmeier. Chiral particle separation by a nonchiral microlattice. Physical Review Letters, 109(100603), September 2012.
[24] Lukas Bogunovic, Marc Fliedner, Ralf Eichhorn, Sonja Wegener, and Jan Regtmeier. Chiral particle separation by a nonchiral microlattice. Physical Review Letters, 109(100603), September 2012.
指導教授 陳培亮(Peilong Chen) 審核日期 2013-1-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明