博碩士論文 982205013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.236.100.210
姓名 顏秀禎(Hsiu-Chen Yen)  查詢紙本館藏   畢業系所 統計研究所
論文名稱 聯合長期追蹤與存活資料分析─術後黑色素細胞瘤病患之實例研究
(Joint modeling of longitudinal and survival data─ A case study in patients with resected melanoma)
相關論文
★ 長期與存活資料之聯合模型-新方法和數值方法的改進★ 復發事件存活分析的共享廣義伽瑪脆弱因子之半母數聯合模型
★ 加乘法風險模型結合長期追蹤資料之聯合模型★ 有序雙重事件時間分析使用與時間相關的共變數-邊際方法的比較
★ 存活與長期追蹤資料之聯合模型-台灣愛滋病實例研究★ 以聯合模型探討地中海果蠅繁殖力與老化之關係
★ 聯合模型在雞尾酒療法療效評估之應用—利用CD4/CD8比值探討台灣愛滋病資料★ 時間相依共變數之雙重存活時間分析—台灣愛滋病病患存活時間與 CD4 / CD8 比值關係之案例研究
★ Cox比例風險模型之參數估計─比較部分概似法與聯合模型★ 復發事件存活時間分析-丙型干擾素對慢性肉芽病患復發療效之案例研究
★ Cox 比例風險假設之探討與擴充風險模型之應用★ 以聯合模型探討原發性膽汁性肝硬化
★ 聯合長期追蹤與存活資料分析-肝硬化病患之實例研究★ 復發事件存活時間分析-rhDNase對囊狀纖維化病患復發療效之案例研究
★ 聯合長期追蹤與存活資料分析-原發性膽汁性肝硬化病患之實例研究★ 復發事件存活時間分析-Thiotepa對膀胱癌病患復發療效之案例研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本篇文章中,我們利用免疫球蛋白抗體Igg值來評估術後黑色素細胞瘤的復發狀況,並且探討疫苗干擾素α-2b (IFNα-2b) 的加入是否會影響免疫治療劑GMK對於抗體的反應以及混合後疫苗的治療效果。主要利用聯合模型 (joint model) 的概念來對資料做分析,聯合模型同時包含了長期追蹤資料與存活資訊,
使得估計量具有一致性 (consistency)、有效性 (efficiency)、以及漸近常態 (asymptotic normality) 的良好性質。在第一部分我們使用線性隨機效應模型 (linear random effect model) 來對長期追蹤資料做配適,並利用概似比檢定來診斷長期追蹤模型的適合度;在第二部分使用擴充風險模型 (extended hazard model) 描述變數與存活時間的關係,結合這兩部分建構出聯合概似函數且利用EM演算法 (expectation maximization algorithm) 對參數做估計。由於Cox比例風險模型 (Cox proportional hazards model) 和加速失敗時間模型 (accelerated failure time model) 皆為擴充風險模型的特例,因此可利用Wald type拔靴法、Percentile拔靴法以及BC percentile法建構參數信賴區間來對模型做選擇。
摘要(英) We utilize immunoglobulin G serologic responses to the vaccine to appraise the
progression of patients with resected melanoma, and determine whether there are any
adverse response to GMK and evaluate therapeutic efficacy of the combined-modality
therapy. The joint model approach has been used to analyze the data, which includes
both longitudinal and survival data. It makes estimators contains nice properties, such
as consistency, efficiency and asymptotic normality. In the first part, we fit the longit-
udinal data with the linear random effects model, and use the likelihood ratio test to
choose a proper longitudinal model. In the second part, the relationship between the
longitudinal covariates and the failure time can be assessed by means of the extended
hazard model, and then use the EM algorithm to obtain the maximum likelihood esti-
mates. Since the extended hazard model includes two popular survival models, the
Cox proportional hazards model and the accelerated failure time model, we use Wald
type bootstrap, Percentile bootstrap and BC percentile method to select the appropriate
one.
關鍵字(中) ★ 擴充風險模型
★ 聯合模型
關鍵字(英) ★ Joint model
★ Extended hazard model
論文目次 摘 要 I
英文摘要 II
致謝辭 III
目 錄 IV
表 目 錄 VI
圖 目 錄 VII
符 號 表 IX
第一章 緒論 1
1-1 背景資料 1
1-1.1 疾病介紹 2
1-1.2 疾病病因 4
1-1.3 危險因子 4
1-1.4 診斷指標 5
1-1.5 黑色素細胞瘤的分期 5
1-1.6 治療方式 6
1-2 研究背景 10
1-3 研究目的 14
第二章 統計方法 15
2-1 長期追蹤模型 16
2-2 Cox比例風險模型 18
2-3 加速失敗時間模型 18
2-4 擴充風險模型 20
2-5 聯合概似函數 21
2-6 EM演算法 23
2-7 參數標準差與信賴區間之估計 29
第三章 實例分析 32
3-1 資料介紹 32
3-2 圖形法 34
3-2.1 輪廓圖 34
3-2.2 事件歷史圖 39
3-2.3 3D平滑曲面圖&等高圖 46
3-3 比例風險檢定 53
3-4 聯合模型 55
第四章 結論與討論 63
參考文獻 66
參考文獻 Ciampi, A. and Etezadi-Amoli, J. (1985). “A general model for testing the proportional hazards and the accelerated failure time hypothesis in the analysis of censored survival data with covariate.” Communications in Statistics, 14, 651-667.
Cox, D. R. (1972). Regression Models and Life-Tables. Journal of the Royal Statistical Society, 34, 187-220.
Cox, D. R. and Oakes, D. (1984), Analysis of Survival Data, Chapman and Hall, London, New York.
Dafni, U. G. and Tsiatis, A. A. (1998). Evaluating Surrogate Markers of Clinical Outcome When Measured with Error. Biometrics, 54, 1445-1462.
Dubin, J. A., Müller, H. G. and Wang, J. L. (2001). Event history graphs for censored survival data. Statistics in Medicine, 20, 2951-2964.
Efron, B., Tibshirani, R. J. (1993). An introduction to the Bootstrap. Chapman & Hall, New York.
Henderson, R., Diggle, P. and Dobson, A. (2000). Joint modeling of longitudinal measurements and event time data. Biostatistics, 4, 465-480.
Hsieh, F., Tseng, Y. K. and Wang, J. L. (2006). Joint Modeling of Survival and Longitudinal Data: Likelihood Approach Revisited. Biometrics, 62, 1037-1043.
John M. Kirkwood, Joseph Ibrahim, David H. Lawson, Michael B. Atkins, Sanjiv S. Agarwala, Keirsten Collins, Ruth Mascari, Donna M. Morrissey, Paul B. Chapman, High-Dose Interferon Alfa - 2b Does Not Diminish Antibody Response to GM2 Vaccination in Patients With Resected Melanoma: Results of the Multicenter Eastern Cooperative Oncology Group Phase II Trial E2696, Journal of Clinical Oncology, vol. 19, no. 5, 2001, pp. 1430-1436.
Jones, M.C. (1990). The performance of kernel density functions in kernel distribution
function estimation. Statistics and Probability Letters, 9, 129-132.
Jones, M.C. and Sheather, S.J. (1991). Using non-stochastic terms to advantage in kernel-based estimation of integrated squared density derivatives. Statistics and Probability Letters, 11, 511-514.
Kaplan, E. L. and Meier, P. (1958). Nonparametric Estimation from Incomplete Observations. Journal of the American Statistical Association, 53, 457-481.
Laird, N. M. and Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics, 38, 963-974.
Prentice, R. L. (1982). Covariate measurement errors and parameter estimation in a failure time regression model. Biometrika, 69, 331-342.
Schoenfeld, D. (1980). “Chi-Squared Goodness-of-Fit Tests for the Proportional Hazards Regression Model.” Biometrika, 67, 145-153.
Schoenfeld, D.A. (1982). “Partial residuals for the proportional hazards regression model.” Biometrika, 69, 239-241.
Tseng, Y. K., Hsieh F. and Wang, J. L. (2005). Joint modeling of accelerated failure time and longitudinal data. Biometrika, 92, 587-603.
Tsiatis, A. A. and Davidian, M. (2001). A semiparametric estimator for the proportional hazards model with longitudinal covariates measured with error. Biometrika, 88, 447-458.
Tsiatis, A. A. and Davidian, M. (2004). Joint Modeling of Longitudinal and Time-to-Event Data: An Overview. Statistica Sinica, 14, 809-834.
Tsiatis, A. A., DeGruttola, V. andWulfsohn, M. S. (1995). Modeling the relationship of survival to longitudinal data measured with error. Applications to survival and CD4 counts in patients with AIDS. Journal of the American Statistical Association, 90, 27-37.
Wang, Y. and Taylor, J. M. G. (2001). Jointly Modeling Longitudinal and Event Time Data With Application to Acquired Immunodeficiency Syndrome. Journal of the American Statistical Association, 96, 895-905.
Wulfsohn, M. S. and Tsiatis, A. A. (1997). A Joint Model for Survival and Longitudinal Data Measured with Error. Biometrics, 53, 330-339.
Zeng, D. and Cai, J. (2005). Asymptotic Results for Maximum Likelihood Estimators in Joint Analysis of Repeated Measurements and Survival Time. The annals of Statistics, 33(5), 2132-2163.
Zeng, D. and Lin, D. Y. (2007a). Maximum Likelihood Estimation in Semiparametric Regression Models with Censored Data (with Discussion). Journal of the Royal Statistical Society, Series B 69, 507-564.
Zeng, D. and Lin, D. Y. (2007b). Efficient Estimation in the Accelerated Failure Time Model. Journal of the American Statistical Association, 102, 1387-1396.
指導教授 曾議寬(Yi-Kuan Tseng) 審核日期 2011-6-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明