博碩士論文 982206008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:18.219.89.206
姓名 潘弘毅(Hung-yi Pan)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 液晶填充分佈式布拉格反射鏡波導
(Liquid Crystal Infiltrated Waveguide with Distributed Bragg Reflectors)
相關論文
★ 氮化鎵微光學元件之研究★ 二維雙輸入雙輸出光子晶體分光器
★ 矽光波導元件光耗損研究★ 矽晶片波導元件研究
★ 砷化鎵光子晶體共振腔研究★ 應用奈米小球製作之波導模態共振器
★ 光子晶體異常折射之能流研究★ 氮化鎵光子晶體共振腔
★ 分析BATC大視野多色巡天計畫中正常星系的質光比★ 新型中空多模干涉分光器
★ 表面電漿對於半導體發光元件光萃取效率的影響之探討★ 半導體光子晶體雷射之研究
★ 新型中空光波導研製與應用★ 動態波長分配技術在乙太被動光纖網路的應用
★ 禁止頻帶材料的光學與聲波特性研究★ 漸變式光子晶體透鏡研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本論文中,我們提出了液晶灌注於布拉格反射鏡波導的結構,來製作一種可調變式的波導元件。藉由外加電壓的影響,來改變液晶分子排列與波導內部核心(core)的折射率變化。並且運用布拉格反射鏡的光波長選擇性,期望能將波導作為可電調控式的光開關與光學濾波元件。
該元件中的波導包覆層(cladding)為布拉格反射鏡,乃經由二氧化矽(silicon dioxide, SiO2)與氮化矽(silicon nitride, Si3N4)兩種膜層堆所組成的高反射率之布拉格反射鏡,其原理是利用干涉光學將光侷限於液晶核心中。在膜層設計上,我們利用傳遞矩陣法(transfer matrix)來決定膜層結構,再藉由光束傳播法(Beam Propagation Method)模擬計算元件的侷限效果。
在量測方面,(1)我們運用偏光顯微鏡架構來觀察不同電壓下波導中的液晶形態,藉由光偵測器來量化所看到的情形,進而臆測液晶傾角與電壓的關係。(2)我們量測在532nm波段的傳輸行為,發現不論任何角度偏振的光源耦合至波導,該波導輸出端的強度都會因外加電壓增加而衰減;當外加電壓為9Vrms時,輸出端的強度為最弱,且消光比(extinction ratio, ER)達到28dB,可作為光開關。(3)我們量測波導的可見光波段頻譜與電壓之影響,發現波導的傳輸頻譜會因為電場作用下而有了選擇性濾波的功能,並隨著電壓增加而輸出光強逐漸消逝。最後施加至30Vrms時,波導會變為可侷限全可見光範圍之傳輸頻譜的現象。
我們的模擬及實驗結果,期望可幫助設計與製作以液晶灌注於布拉格反射鏡波導為基礎之可調式光電元件。
摘要(英) In this study, we propose the liquid crystal infiltrated waveguide with distributed Bragg reflector (DBR), which enables a dynamic control of tunable waveguide. The reorientation of the high susceptibility of liquid crystal (LC) molecular is successively achieved by varying external voltage to change the refractive index of the guiding core. Due to the electrical tuning of LC and the wavelength-selective property of DBR structure, the waveguide can be used as the tunable switching or the filter device.
In the cladding of DBR structure, the multilayer stacks are formed by six pairs of Si3N4/SiO2, which is designed by the transfer matrix method. Also, we use the beam propagation method (BPM) to simulate the light behavior for different indices of LC in the guiding core.
In experimental parts, we utilize three approaches to realize the characteristics of LC infiltrated waveguide with DBR. First of all, we use the polarized optical microscopy to observe and speculate the alignment of LC. Secondly, in the measurement of waveguide with different applied voltages, which is operating at 532nm, the waveguide can be served as an electrically optical switch with 28dB attenuation at 9Vrms. Finally, we measure the transmission spectrum of waveguides at visible wavelength range for varying applied voltages. The result shows that the LC in guiding core can change the transmission spectrum of the LC-filled waveguide. In the voltage-off state, the wavelength from 500nm to 660nm can be confined in the guiding core. As the applied voltage increases, the bandgap edge can be shift to the short wavelength. Specifically, while the external voltage is from 9Vrms to 20Vrms, the propagated light cannot be confined in the guiding core. At the external voltage of 30Vrms, we measured the all of visible wavelength that can be confined in the guiding core.
The results of our simulation and the experiment measurement can help us to design and fabricate tunable devices based on the liquid crystal infiltrated waveguide with DBR.
關鍵字(中) ★ 可調變式元件
★ 液晶
★ 中空光波導
關鍵字(英) ★ tunable devices
★ liquid crystal
★ hollow waveguides
論文目次 中文摘要............I
Abstract............II
致謝................IV
第一章 緒論.......1
1.1 前言.............1
1.2 光子晶體與液晶的應用.......2
1.2.1 一維光子晶體.............3
1.2.2 二維光子晶體.............4
1.2.3 三維光子晶體.............7
1.3 本章結論與研究動機.........8
第二章 基本原理.............10
2.1 光波導設計原理.............10
2.1.1 傳遞矩陣(Transfer matrix)................10
2.1.2 光束傳播方法(Beam propagation method)....14
2.1.3 有效折射率的計算方法.....................15
2.2 液晶介紹.........................16
2.2.1 何謂液晶.......................17
2.2.2 液晶的種類.....................18
2.2.3 液晶之雙折射性質(Birefringence, △n)......20
2.2.4 液晶之介電異向性(Dielectric anisotropy, △ε)......22
2.3 瓊斯矩陣................23
2.3.1 液晶的瓊斯矩陣運算....25
2.4 本章結論................28
第三章 實驗設計與製作過程....30
3.1 膜層設計................30
3.2 液晶波導的模擬與分析....39
3.3 液晶波導的製作流程......42
3.4 本章結論................46
第四章 實驗結果與討論....47
4.1 偏光顯微鏡的觀察方法與結果分析.......47
4.2 液晶受到電場作用下的導軸排列與折射率臆測分析 .....50
4.3 電調控液晶波導的量測結果..........52
4.3.1 綠光波長傳輸情形與電調控變化.............52
4.3.2 白光光源傳輸頻譜情形與電調控變化 .........58
4.5 本章結論.................64
第五章 總結與未來展望......65
5.1 本文總結.................65
5.2 未來工作.................66
參考文獻.....................69
參考文獻 [1] E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059 (1987)
[2] E. Yablonovitch, “Photonic crystals: semiconductor of light,” Scientific American, December, 47 (2001)
[3] J. D. Joannopoulos, R. D. Meade, and J. N. Winn, "Photonic Crystals: Molding the Flow of Light,” Princeton, September (1995)
[4] K. Sakoda, “Optical Properties of Photonic Crystals,” Springer (2001)
[5] Birks T. A., et al. “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941 (1995)
[6] O. Painter, et al. “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819 (1999)
[7] T. Yoshie, A.Scherer, et al. “Quantum dot photonic crystal laser,” Electronics Lett. 38, 967 (2002)
[8] W. Y. Chen, W. H. Chang, H. S. Chang, and T. M. Hsu, “Enhanced light emission from InAs quantum dots in single-defect photonic crystal microcavities at room temperature,” Appl. Phys. Lett. 87, 071111 (2005)
[9] K. N. Hui, W. Y. Fu,W. N. Ng, C. H. Leung, P. T. Lai, K. K. Y. Wong, and H. W. Choi, “Polychromatic light-emitting diodes with a fluorescent nanosphere opal coating,” Nanotechnology 19, 355203 (2008)
[10] H. T. Chien, C. Lee, H. K. Chiu, K. C. Hsu, C. C. Chen, J. A. Ho, and C. Chou, “The Comparison Between the Graded Photonic Crystal Coupler and Various Couplers, ” J. Lightwave Technol. 27, 2570 (2009)
[11] T. Decoopman, G. Tayeb, S. Enoch, D. Maystre, and B. Gralak, “Photonic Crystal Lens: From Negative Refraction and Negative Index to Negative Permittivity and Permeability,” Phys. Rev. Lett. 97, 073905 (2006)
[12] C. C. Chen, H. D. Chien, and P. G. Luan, “Photonic crystal beam splitters,” Appl. Opt. 43, 6187 (2004)
[13] A. Yariv, and P. Yeh, “Optical waves in crystals,” Wiley, New York, Chap.6 (2004)
[14] S. A. Kumar, C. L. Nagendra, H. G. Shanbhogue, and G. K. M. Thutupalli, ”Near-infrared bandpass filters from Si/SiO2 multilayer coating,” Opt. Eng. 38, 368 (1999)
[15] C. S. Kee, J. E. Kim, and H. Y. Parl, “Heliconic band structure of one-dimensional periodic metallic composites,” Phys. Rev. E 57, 2327 (1998)
[16] S. Kim and V. Goplalan, “Strain-tunable photonic band gap crystals,” Appl. Phys. Lett. 78, 3015 (2001)
[17] H. Takeda and K. Yoshino , “Properties of two-dimensional photonic crystals in elastomers,” Phys. Rev. B 66, 115207 (2002)
[18] A. Sharkawy, S. Shi, and D.W. Prather, “Electro-optical switching using coupled photonic crystal waveguides,” Opt. Express 10, 1048 (2002)
[19] G. Pucker et al., J. Appl. Phys. 95, 767 (2004)
[20] H. Ouyang, M. Christophersen, R. Viard, and P. M. Fauchet, “Macroporous silicon microcavities for macromolecule detection,” Advanced Functional Materials 15, 1851 (2005)
[21] S. M. Weiss, M. Haurylau, and P. M. Fauchet, “Tunable photonic bandgap structures for optical interconnects,” Opt. Mat. 27, 740 (2005)
[22] S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, and S. John, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61, R2389 (2000)
[23] B. Maune, M. Lončar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85, 360 (2004)
[24] T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11, 2589 (2003)
[25] C. H. Lee, C. H. Chen, C. L. Kao, C. P. Yu, S. M. Yeh, W. H. Cheng, and T. H. Lin, “Photo and electrical tunable effects in photonic liquid crystal fiber,” Opt. Express 18, 2814 (2010)
[26] K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75, 932 (1999)
[27] M. Ozaki, Y. Shimoda, M. Kasano, and K. Yoshino, “Electric Field Tuning of the Stop Band in a Liquid-Crystal-Infiltrated Polymer Inverse Opal,” Adv. Mat. 14, 514 (1999)
[28] C. C. Chen and H. K. Chu, “Method for fabicating distributed bragg reflector waveguide,” US patent: 7,783,151 B2, Aug. 24 ( 2010)
[29] 松本正一, 角田市良合著, 劉瑞祥譯, “液晶之基礎與應用,” 國立編譯館出版, 1996年6月初版
[30] J. Li, C.H. Wen, Gauza S., Lu R., and S. T. Wu , “Refractive Indices of Liquid Crystals for Display Applications,” J. Display Tech. 1, 51 (2005)
[31] P. Yeh and A. Yariv, “Optical Waves in crystals,” John Wiley & Son (1984)
[32] A. Sneh and K. M. Johnson, J. Lightwave Technol. 14, 1067 (1996)
[33] R. C. Jones, "New calculus for the treatment of optical systems," J. Opt. Soc. A. 31, 488 (1941)
[34] E. D. Palik, “Handbook of Optical Constants of Solids,” Academic Press (1985)
[35] 粘珊綺, “電調變液晶波導,” 國立中央大學光電科學研究所碩士論文 (2010)
[36] F. Xu, H.S. Kitzerow, P.P. Crooker, “Electric-field effects on nematic droplets with negative dielectric anisotropy,” Phys. Rev. A 46, 6535 (1992)
[37] H.S. Kitzerow, B. Liu, F. Xu, P.P. Crooker, "Effect of chirality on liquid crystals in capillary tubes with parallel and perpendicular anchoring," Phys. Rev. E 54, 568 (1996)
[38] G. P. Bryan-Brown, E. L. Wood, I. C. Sage, “Weak surface anchoring of liquid crystals” Nature 399, 338 (1999)
[39] T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li, and S.T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers”, Opt. Express 12, 5857 (2004)
[40] Vladimir V. Presnyakov, Zhijian J. Liu, and Vladimir G. Chigrinov, “Infiltration of photonic crystal fiber with liquid crystals”, Proc. SPIE 6017, 60170J (2005)
[41] I. Heynderickx, H. De Raedt, “Calculation of the director configuration of nematic liquid crystals by the simulated-anneal method,” Phys. Rev. A 37, 1725 (1988)
[42] W. Klaus, Y. Suzuki1, M. Tsuchiya, T. Kamiya, “Optical characterization of homogeneous nematic liquid crystal cells based on the liquid crystal continuum model,” Jpn. J. Appl. Phys. 34, 6116 (1995)
[43] R. H. Self, C. P. Please and T. J. Sluckin, “Deformation of nematic liquid crystals in an electric field,” J. Appl. Math. 13, 1 (2002)
[44] L. Z. Ruan, F. Yang and J. R. Sambles, “Voltage dependent director of a homeotropic negative liquid crystal cell,” Appl. Phys. Lett. 93, 031909 (2008)
[45] Stéphane Coen, Alvin Hing Lun Chau, Rainer Leonhardt, John D. Harvey, Jonathan C. Knight, William J. Wadsworth, Philip St. J. Russell, “White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber.” Opt. Lett. 26, 1356 (2001)
[46] W. J. Wadsworth, Arturo Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Man, and P. St. J. Russell, “Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source.” J. Opt. Soc. Am. B 19, 2148 (2002)
[47] P. G. de Gennes, “The Physics of Liquid Crystals,” Oxford U. Press, London (1974)
指導教授 徐桂珠、陳啟昌
(Kuei-Chu Hsu、Chii-Chang Chen)
審核日期 2011-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明