參考文獻 |
[1.1] 許巧玲, 科學天地. (2004) 10-15
[1.2] 張品全, 科學發展. 349 (2002) 23-29
[1.3]http://commons.wikimedia.org/wiki/File%3ABest_Research-Cell_Efficiencies.png.
[1.4] G. A. Martin, E. Keith, H. Yoshihiro, W. Wilhelm and D. D. Ewan “Solar cell efficiency tables (version 43)” Progress in Photovoltaics: Research and Application, 22, 1-9, (2014).
[1.5] M. Tanaka, T. Matsuyma, T. Sawada, S. Tsuda, S. Nakano, H. Hanafusa, Y. Kuwano, "Devolpment of New a-Si/ c-Si Heterojunctiom Solar Cells: ACJ-HIT (Artificially Constructed Junction-Heterojunction with Intrinsic Thin-Layer)" Applied Physics Letters, 31, 3518-3522, (1992).
[1.6]http://panasonic.co.jp/corp/news/official.data/data.dir/2014/04/en140410-4/en140410-4.html
[1.7] M. H. Brodsky, R. S. Title, K. Weiser and G. D. Pettit, “Structural, optical, and electrical properties of amorphous silicon films”, Physical Review B, 1, 2632-2641, (1970).
[1.8] G. A. N. Connell and J. R. Pawlik, “Use of hydrogen in structural and electronic studies of gap states in amorphous germanium”, Physical Review B, 13, 787-804, (1976).
[1.9] A. J. Lewis, “Use of hydrogen in the transport properties of amorphous germanium”, Physical Review B, 14, 658-668, (1970).
[1.10] W. Pual, A. J. Lewis, G. A. N. Connel and T. D. Moustakas, ”Doping, Schottky barrier and p-n junction formation in amorphous germanium and silicon by rf sputtering”, Philosophical Magazine, 33, 935-949, (1976).
[1.11] W. Pual, A. J. Lewis, G. A. N. Connel and T. D. Moustakas, ”Doping, Schottky barrier and p-n junction formation in amorphous germanium and silicon by rf sputtering”, Solid State Communications, 20, 969-972, (1976).
[1.12] T. D. Moustakas, D. A. Anderson and W. Pual, “Preparation of highly photoconductive amorphous silicon by rf sputtering”, Solid State Communications, 23, 155-158, (1977).
[1.13] D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si”, Applied Physics Letters, 31, 292-294, (1977).
[1.14] M. H. Brodsky, M. Cardona and J. J. Cuomo “Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering”, Physical Review B, 16, 3556-3571, (1977).
[1.15] E. C. Freeman and W. Paul, “Infrared vibrational spectra of rf-sputtered hydrogenated amorphous silicon”, Physical Review B, 18, 4288-4300, (1978).
[1.16] T. D. Moustakas, “Sputtered hydrogenated amorphous silicon”, Journal Electronic Materials, 8, 391-435, (1979).
[1.17] T. Tiedje, T. D. Moustakas and J. M. Cebulka, “Effect of hydrogen on the density of gap states in reactively sputtered amorphous silicon”, Physical Review B, 23, 5634-5637, (1981).
[1.18] T. D. Moustakas and R. Friedman, “Amorphous silicon p-i-n solar cells fabricated by reactive sputtering”, Applied Physics Letters, 40, 515-517, (1982).
[1.19] T. D. Moustakas and H. P. Maruska, “Method for sputtering a pin microcrystalline/amorphous silicon semiconductor device with the P and N-layers sputtered from boron and phosphorous heavily doped targets” United States Patent, No.4508609, (1985).
[1.20] Y. Ohmura, M. Takahashi, M. Suzuki, N. Sakamoto and T. Meguro, “P-type doping of hydrogenated amorphous silicon films with boron by reactive radio-frequency co-sputtering” Physica B, 308-310, 257-260, (2001).
[1.21] M. M. de Lima Jr., F. L. Freire Jr., and F. C. Marques, “Boron doping of hydrogenated amorphous silicon prepared by rf-co-sputtering” Brazilian Journal of Physics, 32, 379-382, (2002).
[1.22] M. Pinarbasi, J. R. Abelson and M. J. Kushner, “Reduced Staebler-Wronski effect in reactively sputtered hydrogenated amorphous silicon thin films”, Applied Physics Letters, 56, 1685-1687, (1990).
[1.23] Minfeng Chen, Hung-chun Chang, Allan S. P. Chang, Shawn-Yu Lin, J.-Q. Xi, and E. F. Schubert, ”Design of optical path for wide-angle gradient-index antireflection coatings”, Apploed Optics, 46, 26, 6533-6538, (2007).
[1.24] Mei-Ling Kuo, David J. Poxson, Yong Sung Kim, Frank W. Mont, Jong Kyu Kim, E. Fred Schubert,and Shawn-Yu Lin, “Realization of a near-perfect antireflection coating for silicon solar energy utilization”, Optics Letters, 33, 2527-2529, (2008).
[1.25] H. Angermann, J. Rappich a, L. Korte , I. Sieber , E. Conrad , M. Schmidt , K. Hu¨bener , J. Polte , J. Hauschild, ” Wet-chemical passivation of atomically flat and structured silicon substrates for solar cell application”, Applied Surface Science, 254, 3615-3625, (2008).
[1.26] Chung-Feng Jeffrey Kuo, Hung-Min Tu, Te-Li Su, “Optimization of the Electron-Beam-Lithography Parameters for the Moth-Eye Effects of an Antireflection Matrix Structure”, Journal of Applied Polymer Science, 102, 5303-5313, (2006).
[1.27] Kui-Qing Peng, Xin Wang, Li Li, Xiao-Ling Wu, and Shuit-Tong Lee, “High-Performance Silicon Nanohole Solar Cells”, Journal of the American Chemical Society, 132, 6872-6873, (2010).
[1.28] Erik H. Anderson, Henry I. Smith, Mark L. Schattenburg, “Holographic Lithography”, United States Patent, No.5142385, (1992).
[1.29] Chaitanya K. Ullal, Martin Maldovan, Edwin L. Thomas, Gang Chen, Yong-Jin Han, and Shu Yang, “Photonic crystals through holographic lithography: Simple cubic, diamond-like, and gyroid-like structures”, Applied Physics Letters, 84, 5434-5436, (2004).
[1.30] Hitoshi Sai,a Homare Fujii, Koji Arafune, Yoshio Ohshita, Masafumi Yamaguchi, Yoshiaki Kanamori and Hiroo Yugami, ” Antireflective subwavelength structures on crystalline Si fabricated using directly formed anodic porous alumina masks”, Applied Physics Letters, 88, 201116, (2006).
[1.31] Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbott, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting”, Applied Physics Letters, 94, 263118, (2009).
[1.32] Gong-Ru Lin, Ya-Chung Chang, En-Shao Liu, Hao-Chung Kuo and Huang-Shen Lin, “Low refractive index Si nanopillars on Si substrate”, Applied Physics Letters, 90, 181923, (2007).
[1.33] H.W. Deckman, J.H. Dunsmuir, “Natural lithography”, Applied Physics Letters, 41, 377, (1982).
[1.34] W.A. Nositschka, C. Beneking, O. Voigt, H. Kurz, “Texturisation of multicrystalline silicon wafers for solar cells by reactive ion etching through colloidal masks”, Solar Energy Materials & Solar Cells, 76, 155-166, (2003).
[1.35] Chih-Hung Sun, Brian J. Ho, Bin Jiang, and Peng Jiang, “Biomimetic subwavelength antireflective gratings on GaAs”, Optics Letters, 33, 2224-2226, (2008).
[1.36] Chia-Hung Hou, Shao-Ze Tseng, Chia-Hua Chan, Tsing-Jen Chen, Hung-Ta Chien, Fu-Li Hsiao, Hua-Kung Chiu, Chien-Chieh Lee, Yen-Ling Tsai, and Chii-Chang Chen, “Output power enhancement of light-emitting diodes via two-dimensional hole arrays generated by a monolayer of microspheres”, Applied Physics Letters, 95, 133105, (2009).
[2.1] 李正中, “薄膜光學與鍍膜技術”, 第六版, 藝軒圖書出版社, (2009).
[2.2] http://www.pveducation.org/pvcdrom/pn-junction。
[2.3] Martin A. Green著, 曹昭陽, 狄大衛, 李秀文譯, “太陽電池工作原理、技術與系統應用”, 五南圖書出版有限公司, (2009).
[2.4]Masayuki Iwamoto, Kouji Minami and Toshihiko Yamaoki, “Photovoltaic device”, US patent 5066340, (1991).
[2.5] Makoto Tanaka, Mikio Taguchi, Takao Matsuyama, Toru Sawada, Shinya Tsuda, Shoichi Nakano, Hiroshi Hanafusa and Yukinori Kuwano, “Development of New a-Si/ c-Si Heterojunction Solar cells: ACH-HIT (Artificially Constructed Junction-Heterojunction with Intrinsic Thin-Layer)”, Japanese Journal of Applied Physics, 31, 3518-3522, (1992).
[2.6] B. Jagannathan, W. A. Anderson, J. Coleman, "Amorphous Silicon/p-type Crystalline Silicon Heterojunction Solar Cells", Solar Energy Material and Solar Cells, 46, 289-310, (1997).
[2.7] C. G. Bernhard and W. H. Miller, “A corneal nipple pattern in insect compound eyes”, Acta Physiologica Scandinavica, 56, 385-386, (1962).
[2.8] http://finediamondtools.blogspot.tw/2010/10/moths-eye.html.
[2.9] J. Poortmans and V. Arhipov, “Thin Film Solar Cells Fabrication, characterization and Applications”, (John Wiley & Sons, 2006).
[2.10] K. Tanaka. “Minimal Urbach energy in non-crystalline materials”. Journal of Non-Crystalline Solids, 389, 35-37, (2014).
[2.11] G. Lucovsky and W. B. Pollard, “The Physics of Hydrogenated Amorphous Silicon, Part II, Topics in Applied Physics”, (Springer, 1984).
[2.12] A. A. Langford, M. L. Fleet, B. P. Nelson, W. A. Lanford and N. Maley, “Infrared absorption strength and hydrogen content of hydrogenated amorphous silicon”, Physical Review B, 45, 13367-13377, (1992).
[2.13] R. Schropp and M. Zeman, “Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials and Device Technology”, (Kluwer Academic Publishers, 1998).
[3.1] Yiming Liu, Yun Sun, Angus Rockett, “A newsimulationsoftwareofsolarcells—wxAMPS”, Solar Energy Materials & Solar Cells, 98, 124-128, (2012).
[3.2] H. Zhu et. al., ” Applications of AMPS-1D for solar cell simulation” in Proceedings of the National Center for Photovoltaics (NCPV) 15th Program Review Meeting, Denver, Colorado, USA, 309–314, (1999).
[3.3] http://www.ampsmodeling.org/materialData_silicon.html
[3.4] I. Wagner, H. Stasiewski, B. Abeles, and W. A. Lanford, “Surface states in P- and B-doped amorphous hydrogenated silicon”, Physical Review B, 28, 7080-7086, (1983).
[3.5] J. Ristein and G. Weiser, “Influence of doping on the optical properties and on the covalent bonds in plasma deposited amorpohus silicon”, Solar Energy Material and Solar Cells, 12, 221-232, (1985).
[3.6] M. M. de Lima Jr., F. C. Marques, “On the doping mechanism of boron-doped hydrogenated amorphous silicon deposited by rf-co-sputtering”, Journal of Non-Crystalline Solids, 299-302, 605-609, (2002).
[3.7] D. Jousse, E. Bustarret, A. Deneuville and J. P. Stoquert, “Rf-sputtered B-doped a-Si:H and a-Si-B-H alloys”, Physical Review B, 34, 7031-7044, (1986).
[3.8] C. C. Tsai, “Characterization of amorphous semiconducting silicon-boron alloys prepared by plasma decomposition”, Physical Review B, 19, 2041-2055, (1979).
[3.9] 王宣文, “以濺鍍法製作矽異質接面太陽能電池之研究:矽薄膜特性對元件效率的影響”, 國立中央大學博士論文, (2012).
[3.10] Park Ridge, “Handbook of semiconductor wafer cleaning technology : science, technology, and applications”, N.J., U.S.A. : Noyes Publications, (1993).
[3.11] Martin A. Green, Keith Emery, Yoshihiro Hishikawa, Wilhelm Warta and Ewan D. Dunlop, “Solar cell efficiency tables (version 39)”, Progress in Photovoltaics: Research and Applications, 20, 12-20, (2012).
[3.12] D. H. Zhang, B. Chen and D. Haneman, “Metal contacts on amorphous hydrogenated silicon: effects of annealing”, Thin Solid Films, 208, 87-90, (1992).
[3.13] S. K. Kim, J. C. Lee, S. J. Park, Y. J. Kim, K. H. Yoon, "Effect of Hydrogen Dilution on Intrinsic a-Si:H Layer Between Emitter and Si Wafer in Silicon Heterojunction Solar Cell " Solar Energy Materials and Solar Cells, 92, 298-301, (2008).
[4.1] S.Huet, G.V iera, L.Boufendi, “Effect of small crystal size and surface temperature on the Raman spectra of amorphous and nanostructured Si thin films deposited by radiofrequency plasmas”, Thin Solid Films, 403-404, 193-196, (2002).
[4.2] Shibin Li, Yadong Jiang, Zhiming Wu, Jiang Wu, Zhihua Ying, Zhiming Wang, Wei Li and Gregory Salamo, “Origins of 1/f noise in nanostructure inclusion polymorphous silicon films”, Nanoscale Research Letters, 6, 281, (2011).
[4.3] Y. Tsunomura, Y. Yoshimine, M. Taguchi, T. Baba, T. Kinoshita, H. Kanno, Hitoshi Sakata, Eiji Maruyama, Makoto Tanaka, "Twenty-two percent efficiency HIT solar cell," Solar Energy Materials and Solar Cells,93 ,670-673, (2009).
[4.4]Donald A. Neamen著, 楊賜麟譯, “半導體物理與元件”, 滄海書局出版, 初版, (2005).
[4.5]王佑庭, “以濺鍍法與表面鈍化處理製作矽基異質接面太陽能電池”, 國立中央大學碩士論文, (2013).
[4.6] H. Angermann, E. Conrad, L. Korte, J. Rappich, T. F. Schulze, and M. Schmidt, "Passivation of textured substrates for a-Si:H/c-Si hetero-junction solar cells: Effect of wet-chemical smoothing and intrinsic a-Si:H interlayer," Materials Science and Engineering B-Advanced Functional Solid-State Materials, 159-60, 219-223, (2009).
[4.7] S. Watanabe and Y. Sugita, "The role of dissolved-oxygen in hot-water during dissolving oxides and terminating silicon surfaces with hydrogen," Surface Science,327 ,1-8, (1995).
[4.8] R. A. Sinton, A. Cuevas, and M. Stuckings, "Quasi-steady-state photoconductance, a new method for solar cell material and device characterization," in Photovoltaic Specialists Conference, Conference Record of the Twenty Fifth IEEE, 457-460, (1996).
[4.9] R. A. Sinton and A. Cuevas, "Contactless determination of current–voltage characteristics and minority-carrier lifetimes in semiconductors from quasi-steady-state photoconductance data," Applied Physics Letters, 69, 2510, (1996).
[4.10] L. Zhao, C. L. Zhou, H. L. Li, H. W. Diao, and W. J. Wang, "Design optimization of bifacial HIT solar cells on p-type silicon substrates by simulation," Solar Energy Materials and Solar Cells, 92, 673-681, (2008).
[4.11] W. K. Oh, S. Q. Hussain, Y. J. Lee, Y. Lee, S. Ahn, and J. Yi, "Study on the ITO work function and hole injection barrier at the interface of ITO/a-Si: H(p) in amorphous/crystalline silicon heterojunction solar cells," Materials Research Bulletin, 47, 3032-3035, (2012).
[4.12] L. Zhao, C. L. Zhou, H. L. Li, H. W. Diao, and W. J. Wang, "Role of the work function of transparent conductive oxide on the performance of amorphous/crystalline silicon heterojunction solar cells studied by computer simulation," physica status solidi (a), 205, 1215-1221, (2008).
[4.13] 周世欽, “透明導電膜功函數對矽異質接面太陽能電池之影響”, 國立中央大學碩士論文, (2013).
[4.14] K. Bädeker, ” Über die elektrische Leitfähigkeit und die thermoelektrische Kraft einiger Schwermetallverbindungen”, Annalen der Physik (Annals of Physics), 327, 749-766, (1907).
[4.15]中澤弘實,“最新太陽能電池總覽”, 株式會社技術情報協會發行, p.397, Sep. (2007).
[4.16]楊明輝, “透明導電膜”, 第二版, 藝軒圖書出版社發行, Nov. (2012).
[4.17] J.-H. Lee, "Effects of substrate temperature on electrical and optical properties ITO films deposited by r.f. magnetron sputtering," Journal of Electroceramics, 23, 554-558, (2009).
[4.18] G. Haacke, "New figure of merit for transparent conductors," Journal of Applied Physics, 47, 4086-4089, (1976).
[5.1] M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction”, Optical Society of America, 71, 811-818, (1981).
[5.2] L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures”, Optical Society of America, 13, 1870-1876, (1996).
[5.3] S. T. Peng, T. Tamir and H. L. Bertoni, “Theory of periodic dielectric waveguides”, IEEE Transactions on Microwave Theory and Techniques, 23, 123-133, (1975).
[5.4] K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media”, IEEE Transactions Antennas Propagation, 14, 302-307, (1966).
[5.5] K. K. Kawano, and Tsutomu, “Introduction to optical waveguide analysis: Solving Maxwell′s equation and the Schrödinger equation", (John Wiley & Sons, 2001).
[5.6]欒丕綱, 陳啟昌, ”光子晶體-從蝴蝶翅膀到奈米光子學”,五南圖書出版股份有限公司, (2006)
[5.7] J. P. Berenger, “A Perfectly Matched Layer for the Absorption of Electromagnetic-Waves”, Journal of Computational Physics, 114, 185-200, (1994).
[5.8]陳煒,”用奈米小球微影法製作多晶矽太陽能電池表面結構”, 國立中央大學碩士論文, (2011).
[6.1] Shao-Ze Tseng, Chang-Rong Lin, Hung-Sen Wei, Chia-Hua Chan, and Sheng-Hui Chen, “Nanopatterned Silicon Substrate Use in Heterojunction Thin Film Solar Cells Made by Magnetron Sputtering”, International Journal of Photoenergy, accepted, (2014).
[6.2] A. P. Li, F. Auller, A. Birner, K. Nielsch, U. Gosele, “Hexagonal Pore Arrays with a 50-420 nm Interpore Distance Formed by self-organization in Anodic Alumina”, Journal of Applied Physics, 84, 11, 6523-6526, (1998).
[6.3] H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, H. Yugami, "Antireflective Subwavelength Structures on Crystalline Si Fabricated Using Directly Formed Anodic Porous Alumina Masks", Applied Physics Letters, 88, 201116-201111-3, (2006).
[6.4] Martin A. Green著, 曹昭陽, 狄大衛, 李秀文譯, “太陽電池工作原理、技術與系統應用”, 五南圖書出版有限公司, pp. 102~105, (2009).
[6.5] M. A. Green, “General solar cell curve factors including the effects of ideality factor, temperature and series resistance”, Solid-State Electronics, 20, 265-266, (1977). |