參考文獻 |
[1] 經濟部能源局,2010年能源產業技術白皮書,台北市,2010。
[2] Stocker, T., Dahe, Q., Plattner, G.K., Tignor, M., Allen, S., Midgley, P., IPCC workshop on sea level rise and ice sheet instabilities, Workshop Report, Kuala Lumpur, Malaysia, 21-24 June 2010.
[3] Gregor, H., Fuel cell technology hand book, CRC Press, Germany, 2003.
[4] Yamamoto, O., Solid oxide fuel cells: fundamental aspects and prospects, Electrochim. Acta, Vol. 45, pp. 2423-2435, 2000.
[5] Farooque, M., Maru, H.C., Carbonate fuel cells: milliwatts to megawatts, J. Power Sources, Vol. 160, pp. 827-834, 2006.
[6] Magraso, A., Fontaine, M.L., Larring, Y., Bredesen, R., Syvertsen, G.E., Lein, H.L., Grande, T., Huse, M., Strandbakke, R., Haugsrud, R., Norby, T., Development of proton conducting SOFCs based on LaNbO4 electrolyte - status in Norway, Fuel Cells, Vol. 11, No. 1, pp. 17-25, 2011.
[7] Park, S., Kim, T.S., Comparison between pressurized design and ambient pressure design of hybrid solid oxide fuel cell-gas turbine systems, J. Power Sources, Vol. 163, pp. 490-499, 2006.
[8] Zhou, L., Cheng, M., Yi, B., Dong, Y., Cong, Y., Yang, W., Performance of an anode-supported tubular solid oxide fuel cell (SOFC) under pressurized conditions, Electrochi. Acta, Vol. 53, pp. 5195-5198, 2008.
[9] Seidler, S., Henke, M., Kallo, J., Bessler, W.G., Maier, U., Friedrich, K.A., Pressurized solid oxide fuel cells: experimental studies and modeling, J. Power Sources, Vol. 196, pp. 7195-7202, 2010.
[10] Jensen, S.H., Sun, X., Ebbesen, S.D., Knibbe, R., Mogensen, M., Hydrogen and synthetic fuel production using pressurized solid oxide electrolysis cells, Int. J. Hydro. Energy, Vol., 35, pp. 9544-9549, 2010.
[11] 顏正和,平板式固態氧化物燃料電池雙極板之流道設計與流場觀測,碩士論文,國立中央大學,2004。
[12] 簡奇偉,平板式固態氧化物燃料電池氣態多孔管道之速度量測,碩士論文,國立中央大學,2005。
[13] 簡暐珉,平板式SOFC電池堆流場可視化與均勻度之實驗模擬和分析,碩士論文,國立中央大學,2007。
[14] 蔡文哲,實驗量測分析Kee's燃料電池堆流場分佈模式之可靠度,碩士論文,國立中央大學,2009。
[15] Huang, C.M., Optimizations of flow distributors and anodic microstructures for planar SOFC, Ph.D. Thesis, National Central University, Taiwan, 2009.
[16] Shy, S.S., Huang, C.M., Li, H.H., Lee, C.H., The impact of flow distributors on the performance of solid oxide fuel cell - part II: electrochemical impedance measurements, J. Power Sources, Vol. 196, pp. 7555-7563, 2011.
[17] Huang, C.M., Shy, S.S., H.H., Lee, C.H., The impact of flow distributors on the performance of solid oxide fuel cell, J. Power Sources, Vol. 195, pp. 6280-6286, 2010.
[18] Huang, C.M., Shy, S.S., Lee, C.H., On flow uniformity in various interconnects and its influence to cell performance of planar SOFC, J. Power Sources, Vol. 183, pp. 205-213, 2008.
[19] 黃士峻,平板式SOFC單電池堆性能量測:棋盤狀流道尺寸效應,碩士論文,國立中央大學,2008。
[20] 李信宏,棋盤式雙極板尺寸效應對固態氧化物燃料電池性能之影響,碩士論文,國立中央大學,2009。
[21] Larminie, J., Dicks, A., Fuel cell systems explained, 2nd Ed., John Wiley & Sons Ltd., England, 2005.
[22] Song, C., Fuel processing for low-temperature and high-temperature fuel cells: challenges, and opportunities for sustainable development in the 21st century, Catal. Today, Vol. 77, pp. 17-49, 2002.
[23] CRC Handbook of chemistry and physics, 72st Ed., Lide, D.R., Ed., CRC Press: Boca Raton, FL., 1991.
[24] Hamann, C.H., Hamnett, A., Vielstich, W., Electrochemistry, J. Wiley & Sons, New York, 1998.
[25] Vielstich, W., Lamm, A., Gasteiger, H.A., Handbook of Fuel Cells: Fundamentals Technology and Applications, John Wiely & Sons, Ltd, Chichester, England, 2003.
[26] National Museum of American History, http://fuelcells.si.edu/so/sofcmain.htm
[27] Forschungszentrum Julich, FZJ, http://www.fz-juelich.de/portal
[28] Singhal, S.C., Kendall, K., High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Application, Elsevier, Kidlington, 2003.
[29] Yang, W.J., Park, S.K., Kim, T.S., Kim, J.H., Sohn, J.L., Ro, S.T., Design performance analysis of pressurized solid oxide fuel cell/gas turbine hybrid systems considering temperature constrains, J. Power Sources, Vol. 160, pp. 462-472, 2006.
[30] Singhal, S.C., Advances in solid oxide fuel cell technology, Solid State Ionics, Vol. 135, pp. 305-313, 2000.
[31] Virkar, A.V., Fung, K.Z., Singhal, S.C., The effect of pressure on solid oxide fuel cell performance, Proceedings of the Third International Symposium on Ionic and Mixed Conducting Ceramics, 1997.
[32] Henke, M., Kallo, J., Friedrich, K.A., Bessler, W.G., Influence of pressurization on SOFC performance and durability: a theoretical study, Fuel Cells, in press (doi:10.1002/fuce.201000098).
[33] Recknagle, K.P., Ryan, E.M., Koeppel, B.J., Mahoney, L.A., Khaleel, M.A., Modeling of electrochemistry and steam-methane reforming performance for simulating pressurized solid oxide fuel cell stacks, J. Power Sources, Vol. 195, pp. 6637-6644, 2010.
[34] Ni, M., Leung, M.K.H., Leung, D.Y.C., Parametric study of solid oxide fuel cell performance, Energy Conv. Manag., Vol. 48, pp. 1525-1535, 2007.
[35] Patcharavorachot, Y., Arpornwichanop, A., Chuachuensuk, A., Electrochemical study of a planar solid oxide fuel cell: role of support structures, J. Power Sources, Vol. 177, pp. 254-261, 2008.
[36] Bo, C., Yuan, C. Zhao, X., Wu, C.B., Li, M.Q., Parametric analysis of solid oxide fuel cell, Clean Techn. Environ. Policy, Vol. 11, pp. 391-399, 2009.
[37] Kikuchi, R., Yano, T., Takeguchi, T., Eguchi, K., Characteristics of anodic polarization of solid oxide fuel cells under pressurized conditions, Solid State Ionics, Vol. 174, pp. 111-117, 2004.
[38] Thomsen, E.C., Coffey, G.W., Pederson, L.R., Marina, O.A., Performance of lanthanum strontium manganite electrodes at high pressure, J. Power Sources, Vol. 191, pp. 217-244, 2009.
[39] Honeywell, Solid oxide fuel cell hybrid system for distributed power generation, Quarterly Technical Progress Report, DE-FC26-01NT40779, 2002.
[40] Lim, T.H., Song, R.H., Shin, D.R., Yang, J.I., Jung, H., Vinke, I.C., Yang, S.S., Operating characteristics of a 5 kW class anode-supported planar SOFC stack for a fuel cell/gas turbine hybrid system, Int. J. Hydro. Energy, Vol. 33, pp. 1076-1083, 2008.
[41] Carrette, L., Friedrich, K.A., Stimming, U., 2001 Fuel cells – fundamentals and applications, Fuel Cells, Vol. 1, pp. 5-37, 2001.
[42] Yakabe, H., Ogiwara, T., Hishinuma, M., Yasuda, I., 3-D model calculation for planar SOFC, J. Power Sources, Vol. 102, pp. 144-154, 2001.
[43] de Haart, L.G.J., Vinke, I.C., Janke, A., Ringel, H., Tietz, F., in: Yokpawa, H., and Singhal, S.C. (Eds.), Solid Oxide Fuel Cells (SOFC VII), Electrochem. Soc. Proc. The Electrochemical Society, Pennington, New Jersey, PV2001-16:111, 2001.
[44] Hwang, J.J., Chen, C.K., Lai, D.Y., Detailed characteristic comparison between planar and MOLB-type SOFCs, J. Power Sources, Vol. 143, pp. 75–83, 2005.
[45] Schmidt, M., The Hexis Project : Decentralized electricity generation with waste heat utilization in the household, Fuel Cells Bulletin, Vol. 1, pp. 9-11, 1998.
[46] Gardner, F.J., Day, M.J., Brandon, N.P., Pashley, M.N., Cassidy, M., SOFC technology development at Rolls-Royce, J. Power Sources, Vol. 86, pp. 122–129, 2000.
[47] Yakabe, H., Hishinuma, M., Uratani, M., Matsuzaki, Y., Yasuda, I., Evaluation and modeling of performance of anode-supported solid oxide fuel cell, J. Power Sources, Vol. 86, pp. 423-431, 2000.
[48] Ackmann, T., de Haart, L.G.J., Lehnert, W., Stolten, D., Modeling of mass and heat transport in planar substrate type SOFCs, J. Electrochem. Soc., Vol. 150, pp. A783-A789, 2003.
[49] Yuan, J., Rokni, M., Sunden, B., Three-dimensional computational analysis of gas and heat transport phenomena in ducts relevant for anode-supported solid oxide fuel cells, Int. J. Heat Mass Tran., Vol. 46, pp.809-821, 2003.
[50] Lin, Y., Beale, S. Performance predictions in solid oxide fuel cells, 3rd Int. conference on CFD in the Minerals and Process Industries, Melbourne, 10-12 December, 2003.
[51] Larrain, D., Van herle, J., Marechal, F., Favrat, D., Generalized model of planar SOFC repeat element for design optimization, J. Power Sources, Vol. 131, pp. 304-312, 2004.
[52] Beale, S.B., Calculation procedure for mass transfer in fuel cells, J. Power Sources, Vol. 128, pp. 185-192, 2004.
[53] Stiller, C., Thorud, B., Seljebo, S., Mathisen, O., Karoliussen, H., Bolland, O., Finite-volume modeling and hybrid-cycle performance of planar and tubular solid oxide fuel cells, J. Power Sources, Vol. 141, pp. 227-240, 2005.
[54] Ramakrishna, P.A., Yang, S., Sohn, C.H., Innovative design to improve the power density of a solid oxide fuel cell, J. Power Sources, Vol. 158, pp. 378-384, 2006.
[55] Recknagle, K.P., Williford, R.E., Chick, L.A., Rector, D.R., Khaleel, M.A., Three-dimensional thermo-fluid electrochemical modeling of planar SOFC stacks, J. Power Sources, Vol. 113, pp. 109-114, 2003.
[56] Chyou, Y.P., Chung, T.D., Chan, J.S., Shie, R.F., Integrated thermal engineering analyses with heat transfer at periphery of planar solid oxide fuel cell, J. Power Sources, Vol. 139, pp. 126-140, 2005.
[57] Iwata, M., Hikosaka, T., Morita, M., Iwanari, T., Ito, K., Onda, K., Esaki, Y., Sakaki, Y., Nagata, S., Performance analysis of planar-type unit SOFC considering current and temperature distributions, Solid State Ion., Vol. 132, pp. 297-308, 2000.
[58] Lin, Z., Stevenson, J.W., Khaleel, M.A., The effect of interconnect rib size on the fuel cell concentration polarization in planar SOFCs, J. Power Sources, Vol. 117, pp. 92-97, 2003.
[59] Cha, S.W., O’Hayre, R., Prinz, F.B., The influence of size scale on the performance of fuel cells, Solid State Ion., Vol. 175, pp. 789-795, 2004.
[60] Autissier, N., Larrain, D., Van herle, J., Favrat, D. CFD simulation tool for solid oxide fuel cells, J. Power Sources, Vol. 131, pp. 313-319, 2004.
[61] Huang, Q.A., Hui, R., Wang, B., Zhang, J., A review of AC impedance modeling and validation in SOFC diagnosis, Electrochem. Acta, Vol. 52, pp. 8144-8164, 2007.
[62] Barsoukov, E., Macdonald, J.R., Impedance spectroscopy theory, experiment, and applications, 2nd Ed. John Wiley & Sons, Inc., New Jersey, 2005.
[63] Gazzarri, J.I., Kesler, O., Electrochemical AC impedance model of solid oxide fuel cell and its application to diagnosis of multiple degradation modes, J. Power Sources, Vol. 167, pp. 100-110, 2007.
[64] Kim, C.H., Pyun, S.L., Kim, J.H., An investigation of the capacitance dispersion on the fractal carbon electrode with edge and basal orientations, Electrochem. Acta, Vol. 48, pp. 3455-3463, 2003.
[65] Schiller, C.A., Strunz, W., The evaluation of experimental dielectric data of barrier coatings by means of different models, Electrochem. Acta, Vol. 46, pp. 3619-3625, 2001.
[66] Jorcin, J.B., Orazem, M.E., Pèbère, N., Tribollet, B., CPE analysis by local electrochemical impedance spectroscopy, Electrochem. Acta, Vol. 51, pp. 1473-1479, 2006.
[67] Leonide, A., Sonn, V., Weber, A., Ivers-Tiffèe, E., Evaluation and modeling of the cell resistance in anode-supported solid oxide fuel cells, J. Electrochem. Soc., Vol. 155, pp. B36-B41, 2008.
[68] Zhao, F., Virkar, A.V., Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters, J. Power Sources, Vol. 141, pp. 79-95, 2005.
[69] Bio-Logic, SP-150 installation and configuration manual, 2009.
[70] G.D. Marco, A. Pilenga, M. Honselaar, T. Malkow, G. Tsotridis, A. Janssen, B. Rietveld, I. Vinke, J. Kiviaho, “SOFC single cell performance and endurance test modules,” JRC Scientific and Technical Report, TM SOFC 01-04 LD/ 05-08 HD, Joint Research Centre Scientific and Technical Reports, 2010.
[71] Barfod, R., Mogensen, M., Klemensø, T., Hagen, A., Liu, Y.L. and Hendriksen, P.V., Detialed characterization of anode-supported SOFCs by impedance spectroscopy, J. Electrochem. Soc., Vol. 154, pp. B371-B378, 2007.
[72] EG & G Services, “Fuel Cell Handbook,” U.S. Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory, Morgantown, W.V., 2004.
[73] Steinberger-Wilckens, R., Blum, L., Buchkremer, H., Overview of the development of solid oxide fuel cells at Forschungszentrum Juelich, Int. J. Appl. Ceram. Tech., Vol. 3, pp. 470-476, 2006.
[74] Perera, C.K., The effect of mercury on performance of Ni/YSZ anode in a planar solid oxide fuel cell, Ph.D. Thesis, the Russ College of Engineering and Technology of Ohio University, 2010.
[75] Mogensen, M., Larsen, P.H., Hendriksen, P.V., Solid oxide fuel cell testing: results and interpretation, Sixth International Symposium on Solid Oxide Fuel Cells (SOFC-VI), Honolulu, Hawaii, 1999.
[76] Kim, J., Virkar, A., Fung, K., Polarization effects in intermediate temperature, anode-supported solid oxide fuel cells, J. Electrochem. Soc., Vol. 146, pp. 69-78, 1999.
[77] Gemmen, R.S., Williams, M.C., Gerdes, K., Degradation measurement and analysis for cells and stacks, J. Power Sources, Vol. 184, pp. 251-259, 2008.
|