以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:13 、訪客IP:3.145.58.90
姓名 張毓峰(Yu-Fong Chang) 查詢紙本館藏 畢業系所 機械工程學系 論文名稱 摻雜鋁之氧化鋅濺鍍薄膜在草酸溶液中之電化學蝕刻研究
(Electrochemical etching of Al-doped Zinc Oxide sputtered film in oxalic acid)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 ( 永不開放) 摘要(中) 本論文以濺鍍法製備摻鋁氧化鋅透明導電薄膜(AZO),進而以電化學濕式蝕刻法來探討不同條件參數(如:蝕刻液濃度、蝕刻電位等)對此AZO薄膜之蝕刻速率與薄膜特性的影響。首先利用雙靶射頻磁控濺鍍設備於STN玻璃基板上濺鍍AZO薄膜。濺鍍時,工作背壓在5x10-2torr、基板溫度200℃、純鋁靶功率為100W、氧化鋅靶功率為100W時,濺鍍時間150分鐘可獲得最佳化之AZO薄膜。經場發射電子顯微鏡觀察,所得之AZO膜厚為650nm,由四點探針量測得知其電阻率為3.61x10-3 Ω-cm,XRD與XPS分析得知其結構為(002)結晶方向與化學組態為氧化鋅與三氧化二鋁,紫外光-可見光光譜分析儀量測顯示其可見光穿透率高於90%,原子力顯微鏡分析其表面平均粗糙度約為10.079 nm。
電化學蝕刻利用恆電位儀(RARC 2263)供應電源,工作電極為AZO薄膜(1x1 cm2),相對電極為白金鈦網,參考電極為飽和甘汞電極,蝕刻液為草酸水溶液。實驗結果顯示:當草酸溶液濃度增加、蝕刻電位加大時,薄膜蝕刻速率會由34.1nm/min加快至39.2 nm/min。蝕刻後的薄膜其電阻率上升為5.19x10-3Ω-cm,可見光穿透率可高於85%,平均粗糙度為11.26nm。AZO薄膜的透明導電性在草酸溶液中經電化學蝕刻前、後沒有重大改變,因此草酸溶液將是AZO透明導電薄膜的優異電化學蝕刻劑。
摘要(英) The purpose of this study is to prepare conductive transparent Al-doped ZnO films (AZO) by sputtering and to investigate their possible electrochemical etching process. Radio frequency (RF) magnetron sputter was used to prepare the AZO film on STN glass substrates. Resulting from the sputtering process, we obtained satisfactory AZO films (650 nm in thickness with electrical resistivity at 3.61×10-3Ω-cm and optical transmission higher than 90 %) under the following optimal conditions: the working pressure at a vacuum of 5×10-2torr, with RF power at 100 W on pure Al target and also at ZnO target, and setting the substrate temperature at 200℃ for 150 min. The morphology of the films was examined by scanning electron microscopy (SEM), their crystal structure was analyzed by x-ray diffraction (XRD) and surface composition using x-ray photoelectron spectroscopy (XPS).
Electrochemical etching process on the AZO films was investigated in solution where the concentration of etching agents and etching potential were varied. The morphology, roughness of surface crystal structure and surface composition of the films before and after etching were examined by SEM, XRD and XPS. The electrochemical etching was conducted in a standard three-way testing cell where a specimen with AZO films is the working electrode, a platinum foil as the auxiliary electrode, and a saturated calomel electrode (SCE) equipped with Haber-Luggin capillary as the reference electrode. Potentiostatic etching was performed in the solution of oxalic acid by using a potentiostat (PARC 2263). The suitable average etching rate for the AZO films was at 34.1 nm/min which would increase to 39.2 nm/min with increasing the acid concentration and anodic potential in the process. After etching, the electric resistivity maintained almost unchanged (i.e., at 5.19x10-3Ω-cm), and only a slight decrease in optical transmission (decrease from 90 % to 85%). Surface roughness of the etched AZO films increased a little bit (i.e., from 10.079 nm to 11.26 nm). The slight decrease in optical transparency for the etched films may be ascribed to the little increase of the roughness.
關鍵字(中) ★ 草酸
★ 電化學蝕刻
★ 鋁摻雜氧化鋅
★ 動態極化關鍵字(英) ★ oxalic acid
★ Potentiodynamic polarization
★ Al-doped zinc oxide
★ Electrochemical etching論文目次 摘要 I
Abstract III
致謝 V
目錄 VI
表目錄 X
圖目錄 XI
第一章 緒論 1
1-1 前言 1
1-2 研究目的 2
第二章 原理與文獻回顧 3
2-1氧化鋅晶體結構及特性 3
2-2氧化鋅鋁薄膜特性 3
2-3 薄膜濺鍍系統 4
2-3-1 電漿 4
2-3-2 濺鍍理論 5
2-3-3 磁控濺鍍系統 6
2-4 蝕刻原理 7
2-4-1 乾式蝕刻 7
2-4-2 濕式蝕刻 7
第三章 實驗方法 9
3-1 實驗流程 9
3-2 實驗步驟 9
3-2-1 試片清洗 9
3-2-2氧化鋅鋁(AZO)薄膜製作 9
3-2-4 實驗設置 9
3-3 電化學實驗方法 10
3-3-1 開路電位(Open circuit potential) 10
3-3-2動態極化(Potentiodynamic polarization scanning) 10
3-4 微影黃光 10
3-5 分析儀器 11
3-5-1 AFM表面粗糙度分析 11
3-5-2 SEM表面形貌觀察 11
3-5-3 X-ray結晶分析 11
3-5-4 電學性質量測 11
3-5-5 ESCA分析 12
第四章 結果 13
4-1 濺鍍薄膜特性 13
4-1-1電性量測 13
4-1-2 光學特性分析 13
4-1-3 薄膜結構分析 13
4-1-4 EDS成份分析 14
4-1-5 XPS成份分析 14
4-1-6 SEM形貌 14
4-2 透明導電薄膜電化學分析 15
4-2-1 不同草酸蝕刻液濃度動態極化比較 15
4-2-2 定電位實驗比較 16
4-2-3 不同蝕刻時間對薄膜影響 17
4-2-4 有圖案之AZO薄膜蝕刻 18
第五章 討論 20
5. 1 電化學實驗討論 20
5-1-1 開路電位討論 20
5-1-2 腐蝕電流討論 20
5. 2 透明導電氧化膜電化學蝕刻研究 20
5-2-1 表面粗糙度Ra比較值討論 20
5-2-2 蝕刻後SEM表面形貌 21
5-2-3 蝕刻前與蝕刻後電性比較 21
5-2-4蝕刻前與蝕刻後光性比較 21
5-2-5 XPS分析 22
第六章 結論與未來展望 23
第七章 參考文獻 24
參考文獻 [1] H. Sheng, N.W. Emanetoglu, S. Muthukumar, B.V. Yakshinskiy, S. Feng,
and Y.Lu, J. Electron Mater, Vol.32 (2003) 9
[2] H. K. Kim, S. H. Han, and T. Y. Seong, Appl. Phys. Lett. Vol.77 (2000) 11
[3] H. K. Kim, K. K. Kim, S. J. Park, and T. Y. Seong, J.Appl.Phys.Vol.94 (2003) 6
[4] J.N. Ding, F. Ye, N.Y. Yuan, C.B. Tan, Y.Y. Zhu, G.Q. Ding, Z.H. Chen, Applied Surface Science 257 (2010) 1420–1424
[5] 李玉華,”透明導電膜及其應用”,科儀新知,12卷第一期,(79),94-102。
[6] J. L. Vossen, physics of thin films, Vol.9,1997, p.1-64.
[7] T. Minami, S. Suzuki, T. Miyata,Thin Solid Film, Vol.398-399,(2001), pp.53-58
[8] 莊達人,“VLSI 製造技術”, 高立圖書有限公司, pp.352-358, 民國92年。
[9] 徐玄修,林永昇,殷宏林,謝哲偉, “生醫微流體晶片之製程平台”,儀器科技研究中心。
[10] H. Xiao, “Introduction to semiconductor manufacturing technology“, Pearson Education,(2000) p.92.
[11] R.W. Fauthauer, T. George, A. Ksendzov, and R.P. Vasquez, “Visible luminescence from silicon waters subjected to stain etches“, Appl. Phys. Lett., 60 (1992)995.
[12] Y.C. Lin, Y.C. Jian, J.H. Jiang, "A study on the wet etching behavior of AZO (ZnO:Al) transparent conducting", Applied Surface Science 254 (2008) 2671-2677
[13] Y. Igasaki, H. Aito, Thin Solid Films, Vol.199,(1991), pp.223-230
[14] T. Schuler, M. A. Aegerter, Thin Solid Films,Vol.351, (1999), pp.125-131
[15] H. L. Hartnagel, A. K. Jain and C. Jagadish, published by Institute of Physics Publication, (1995), p.17
[16] T. Minami, M. Yamazaki, T. Miyata, Y. Kobayashi, T. Shirai, Thin Solid Films,Vol.411, (2002), pp.161-165
[17] D.D. Malinovska, N. Tzenov, M. Tzolov, L. Vassilev, Materials
Science and Engineering ,Vol.52,1998, p.59.
[18] T. Yamamoto,H. K. Yoshida, J. Crystal Growth , Vol.214, p.552 ,2002.
[19] D. H. Zhang, T. L. Yang, Q. P. Wang, D. J. Zhang, Materials Chemistry
and Physics, Vol. 68, 2001, p.233.
[20] A. V. Singh and R. M. Mehra, J. Appl. Phys, Vol. 90,2001, p.566.
[21] R. Konishi, K. Noda, H. Harada, H. Sasakura, Journal of Crystal Growth,Vol.117, (1992), pp.939-942
[22] B. Chapman, "Glow Discharge Processes", John Wiley and Sons, New York,1980
[23] D. S. Rricherby, A. Matthews, Advanced Surface Coatings: A Handbook of Surface Engineering, Chapaman and Hall,New York,1991, p92-100.
[24] S. M. Rossnagel et al., "Handbook of Plasma Processing Technology", Noyes Publications, Park Ridge, New Jersey, U.S.A.,1982
[25] 莊達人,“VLSI 製造技術”, 高立圖書有限公司, pp.352-358, 民國92年.
[26] 徐玄修, 林永昇, 殷宏林, 謝哲偉, “生醫微流體晶片之製程平台”, 儀器科技研究中心。
[27] 簡毓蒼, “AZO(ZnO:Al)透明導電薄膜之溼式蝕刻製程與分析”, 碩士論文,國立彰化師範大學機電工程學系, 民國96年。
[28] V. Lehmann, Mater. Lett., 28 245 (1996).
[29] A. Janshoff, K. -P. S. Dancil, C. Steinem, D. P. Greiner, V.S.-Y. Lin, C. Gurtner, K. Mosteshariei, M. J. Sailor and M. R. Ghadiri, J. Am. Chem. Soc., 120 12108 (1998).
[30] R. Angelucci, A. Poggi, L. Dori, G. C. Cadinali, A. Parisini, A. Tagliani,
M. Mariasaldi, and F. Cavani, Sens. Actuators A, 74 1 (1999).
[31] C. M. A. Ashruf, P. J. French, P. M. Sarro, R. Kazinczi, X. H. Xia, and J. J.
Kelly, J. Micromech. Microeng., 10 505 (2000).
[32] V. Lehmann , J. Electrochem. Soc., 137 64653 (1990).
[33] T. H.Tsai ,"Wet etching mechanisms of ITO films in oxalic acid
",Microelectronic Engineering 83 (2006) 536–541
[34] 李恒旭, "利用濕式蝕刻法粗糙化氧化鋅摻鋁薄膜特性分析", 碩士論文
,崑山科技大學電機工程系, 民國98年。
[35] Y. I. Seoa, Y. J. Leea, D. G.Kim , K. H. Leeb and
Y. D. Kim, "Fabrication of Ag/Al(OH)3 mesoporous nanocomposite film",
Microporous and Mesoporous Materials 139 (2011) 211–215.
[36] B. C. Lin, P. Shen, and S. Y. Chen, "ZnO and ε-Zn(OH)2 Composite Nanoparticles by Pulsed Laser Ablationon Zn in Water", J. Phys. Chem. C 2011, 115, 5003–5010.
指導教授 林景崎(Jing-Chie Lin) 審核日期 2011-7-26 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare