參考文獻 |
1. Mason, C.; Dunnill, P., A brief definition of regenerative medicine. Regen Med 2008, 3 (1), 1-5.
2. Mason, C.; Manzotti, E., 'The Little Purple Book': BSI Glossary of Regenerative Medicine. Regen Med 2009, 4 (4), 483-484.
3. Thomson, J. A.; Swaney, D. L.; Wenger, C. D.; Coon, J. J., Human embryonic stem cell phosphoproteome revealed by electron transfer dissociation tandem mass spectrometry. P Natl Acad Sci USA 2009, 106 (4), 995-1000.
4. Blagoev, B.; Olsen, J. V.; Gnad, F.; Macek, B.; Kumar, C.; Mortensen, P.; Mann, M., Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 2006, 127 (3), 635-648.
5. Hunter, T., Signaling - 2000 and beyond. Cell 2000, 100 (1), 113-127.
6. Mann M., Ong S. E., Grønborg M., Steen H., Jensen O. N., Pandey A., Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends Biotechnol 2002, 20 (6), 261-268.
7. Cohen, P., The role of protein phosphorylation in human health and disease - Delivered on June 30th 2001 at the FEBS Meeting in Lisbon. Eur J Biochem 2001, 268 (19), 5001-5010.
8. McLachlin, D. T., Chait, B. T., Analysis of phosphorylated proteins and peptides by mass spectrometry. Curr Opin Chem Biol 2001, 5 (5), 591-602.
9. Larsen, M. R.; Thingholm, T. E.; Jorgensen, T. J. D.; Jensen, O. N., Highly selective enrichment of phosphorylated peptides using titanium dioxide. Nat Protoc 2006, 1 (4), 1929-1935.
10. Wei, J.; Buriak, J. M.; Siuzdak, G., Desorption-ionization mass spectrometry on porous silicon. Nature 1999, 399 (6733), 243-246.
11. Thomas, J. J.; Shen, Z. X.; Blackledge, R.; Siuzdak, G., Desorption-ionization on silicon mass spectrometry: an application in forensics. Anal Chim Acta 2001, 442 (2), 183-190.
12. Huikko, K.; Ostman, P.; Sauber, C.; Mandel, F.; Grigoras, K.; Franssila, S.; Kotiaho, T.; Kostiainen, R., Feasibility of atmospheric pressure desorption/ionization on silicon mass spectrometry in analysis of drugs. Eur J Pharm Sci 2003, 17(12), 1339-1343.
13. Tsao, C. W.; Parshant, K.; Jikun, L.; DeVoe, D. L., Dynamic Electrowetting on Nanofilament Silicon for Matrix-Free Laser Desorption/Ionization Mass Spectrometry. Analytical Chemistry 2008, 80 (8), 2973-2981.
14. Chen, C. T.; Chen, Y. C., Fe3O4/TiO2 core/shell nanoparticles as affinity probes for the analysis of phosphopeptides using TiO2 surface-assisted laser desorption/ionization mass spectrometry. Analytical Chemistry 2005, 77 (18), 5912-5919.
15. Chen, W. Y.; Chen, Y. C., Functional Fe3O4@ZnO magnetic nanoparticle-assisted enrichment and enzymatic digestion of phosphoproteins from saliva. Anal Bioanal Chem 2010, 398 (5), 2049-2057.
16. Munson, M. S. B., Field, F. H., Chemical Ionization Mass Spectrometry. I. General Introduction. J. Am. Chem. Soc. 1966, 88 (12), 9.
17. Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M., Electrospray ionization for mass spectrometry of large biomolecules. Science 1989, 246 (4926), 64-71.
18. Gaskell, S. J., Electrospray: Principles and practice. J Mass Spectrom 1997, 32 (7), 677-688.
19. Cole, R. B., Some tenets pertaining to electrospray ionization mass spectrometry. J Mass Spectrom 2000, 35 (7), 763-772.
20. Kebarle, P., A brief overview of the present status of the mechanisms involved in electrospray mass spectrometry. J Mass Spectrom 2000, 35 (7), 804-817.
21. Tanaka, K., Waki, H., Ido, Y., Akita, S., Yoshida, Y., Yoshida, T., Matsuo, T., Protein and Polymer Analyses up to m/z 100 000 by Laser Ionization Time-of-flight Mass Spectrometry. Rapid Commun Mass Sp 1988, 2 (8), 3.
22. Karas, M.; Hillenkamp, F., Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 1988, 60 (20), 2299-2301.
23. Karas, M.; Bahr, U.; Ingendoh, A.; Nordhoff, E.; Stahl, B.; Strupat, K.; Hillenkamp, F., Principles and Applications of Matrix-Assisted Uv Laser Desorption Ionization Mass-Spectrometry. Anal Chim Acta 1990, 241 (2), 175-185.
24. Stults, J. T., Matrix-Assisted Laser-Desorption Ionization Mass-Spectrometry (Maldi-Ms). Curr Opin Struc Biol 1995, 5 (5), 691-698.
25. Bahr, U.; Karas, M.; Hillenkamp, F., Analysis of Biopolymers by Matrix-Assisted Laser-Desorption Ionization (Maldi) Mass-Spectrometry. Fresen J Anal Chem 1994, 348 (12), 783-791.
26. Cohen, L. H.; Gusev, A. I., Small molecule analysis by MALDI mass spectrometry. Anal Bioanal Chem 2002, 373 (7), 571-586.
27. Merchant, M.; Weinberger, S. R., Recent advancements in surface-enhanced laser desorption/ionization-time of flight-mass spectrometry. Electrophoresis 2000, 21 (6), 1164-1177.
28. Vlahou, A.; Schellhammer, P. F.; Mendrinos, S.; Patel, K.; Kondylis, F. I.; Gong, L.; Nasim, S.; Wright Jr, G. L., Jr., Development of a novel proteomic approach for the detection of transitional cell carcinoma of the bladder in urine. Am J Pathol 2001, 158 (4), 1491-1502.
29. Hutchens, T. W.; Yip, T. T. Method and apparatus for desorption and ionization of analytes. US patent 1998, (5,719,060).
30. Hutchens, T. W.; Yip, T. T. Surface-enhanced neat desorption for disorption and detection of analytes. US patent 1999, (5,894,063).
31. Hutchens, T. W.; Yip, T. T., New Desorption Strategies for the Mass-Spectrometric Analysis of Macromolecules. Rapid Commun Mass Sp 1993, 7 (7), 576-580.
32. Wright, G. L.; Cazares, L. H.; Leung, S. M.; Nasim, S.; Adam, B. L.; Yip, T. T.; Schellhammer, P. F.; Gong, L.; Vlahou, A., Proteinchip((R)) surface enhanced laser desorption/ionization (SELDI) mass spectrometry: a novel protein biochip technology for detection of prostate cancer biomarkers in complex protein mixtures. Prostate Cancer P D 1999, 2 (5-6), 264-276.
33. Weinberger, S. R.; Hlousek, L., Apparatus for microfluidic processing and reading of biochip arrays. US patent 2006, (10,769,693).
34. Chen, Y. C.; Shiea, J.; Sunner, J., Rapid determination of trace nitrophenolic organics in water by combining solid-phase extraction with surface-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Sp 2000, 14 (2), 86-90
35. Sunner, J.; Dratz, E.; Chen, Y. C., Graphite Surface Assisted Laser Desorption/Ionization Time-of-Flight Mass-Spectrometry of Peptides and Proteins from Liquid Solutions. Analytical Chemistry 1995, 67 (23), 4335-4342.
36. Peterson, D. S., Matrix-free methods for laser desorption/ionization mass spectrometry. Mass Spectrom Rev 2007, 26 (1), 19-34.
37. Xu, S. Y.; Li, Y. F.; Zou, H. F.; Qiu, J. S.; Guo, Z.; Guo, B. C., Carbon nanotubes as assisted matrix for laser desorption/ionization time-of-flight mass spectrometry. Analytical Chemistry 2003, 75 (22), 6191-6195.
38. Chen, C. T.; Chen, Y. C., Desorption/ionization mass spectrometry on nanocrystalline titania sol-gel-deposited films. Rapid Commun Mass Sp 2004, 18 (17), 1956-1964.
39. Seino, T.; Sato, H.; Yamamoto, A.; Nemoto, A.; Torimura, M.; Tao, H., Matrix-free laser desorption/ionization-mass spectrometry using self-assembled germanium nanodots. Analytical Chemistry 2007, 79 (13), 4827-4832.
40. Hsu, N. F.; Tseng, S. Y.; Wu, C. Y.; Ren, C. T.; Lee, Y. C.; Wong, C. H.; Chen, C. H., Desorption ionization of biomolecules on metals. Analytical Chemistry 2008, 80 (13), 5203-5210.
41. Tsao, C. W.; Kumar, P.; Liu, J. K.; Devoe, L., Dynamic electrowetting on nanofilament silicon for matrix-free laser desorption/ionization mass spectrometry. Analytical Chemistry 2008, 80 (8), 2973-2981.
42. Law, K. P.; Larkin, J. R., Recent advances in SALDI-MS techniques and their chemical and bioanalytical applications. Anal Bioanal Chem 2011, 399 (8), 2597-2622.
43. Lewis, W. G.; Shen, Z. X.; Finn, M. G.; Siuzdak, G., Desorption/ionization on silicon (DIOS) mass spectrometry: background and applications. Int J Mass Spectrom 2003, 226 (1), 107-116.
44. Alimpiev, S.; Nikiforov, S.; Karavanskii, V.; Minton, T.; Sunner, J., On the mechanism of laser-induced desorption-ionization of organic compounds from etched silicon and carbon surfaces. Journal of Chemical Physics 2001, 115 (4), 1891-1901.
45. Xiao, Y. S.; Retterer, S. T.; Thomas, D. K.; Tao, J. Y.; He, L., Impacts of Surface Morphology on Ion Desorption and Ionization in Desorption Ionization on Porous Silicon (DIOS) Mass Spectrometry. J Phys Chem C 2009, 113 (8), 3076-3083.
46. Alimpiev, S.; Grechnikov, A.; Sunner, J.; Karavanskii, V.; Simanovsky, Y.; Zhabin, S.; Nikiforov, S., On the role of defects and surface chemistry for surface-assisted laser desorption ionization from silicon. Journal of Chemical Physics 2008, 128 (1), 1-19.
47. Janshoff, A.; Steinem, C.; Lin, V. S. Y.; Ghadiri, M. R.; Sailor, M. J., Characterization and application of macroporous P-type silicon Fabry-Perot layers for biosensor devices. Abstr Pap Am Chem S 1998, 216, U89-U89.
48. Blau, K.; Hackett, J. M., Handbook of Derivatives for Chromatography. 2nd ed.; John Wiley and Sons: New York, 1993.
49. Plueddemann, E. P., Silane Coupling Agents.; Plenum Press: New York, 1982.
50. Dubin, V. M.; Vieillard, C.; Ozanam, F.; Chazalviel, J. N., Preparation and Characterization of Surface-Modified Luminescent Porous Silicon. Phys Status Solidi B 1995, 190 (1), 47-52.
51. Lees, I. N.; Lin, H. H.; Canaria, C. A.; Gurtner, C.; Sailor, M. J.; Miskelly, G. M., Chemical stability of porous silicon surfaces electrochemically modified with functional alkyl species. Langmuir 2003, 19 (23), 9812-9817.
52. Linford, M. R.; Fenter, P.; Eisenberger, P. M.; Chidsey, C. E. D., Alkyl Monolayers on Silicon Prepared from 1-Alkenes and Hydrogen-Terminated Silicon. J Am Chem Soc 1995, 117 (11), 3145-3155.
53. Buriak, J. M.; Allen, M. J., Lewis acid mediated functionalization of porous silicon with substituted alkenes and alkynes. J Am Chem Soc 1998, 120 (6), 1339-1340.
54. Buriak, J. M.; Stewart, M. P.; Geders, T. W.; Allen, M. J.; Choi, H. C.; Smith, J.; Raftery, D.; Canham, L. T., Lewis acid mediated hydrosilylation on porous silicon surfaces. J Am Chem Soc 1999, 121 (49), 11491-11502.
55. deVilleneuve, C. H.; Pinson, J.; Bernard, M. C.; Allongue, P., Electrochemical formation of close-packed phenyl layers on Si(111). J Phys Chem B 1997, 101 (14), 2415-2420.
56. Trauger, S. A.; Go, E. P.; Shen, Z.; Apon, J. V.; Compton, B. J.; Bouvier, E. S. P.; Finn, M. G.; Siuzdak, G., High Sensitivity and Analyte Capture with Desorption/lonization Mass Spectrometry on Silylated Porous Silicon. Analytical Chemistry 2004, 76 (15), 4484-4489.
57. Meng, J. C.; Averbuj, C.; Lewis, W. G.; Siuzdak, G.; Finn, M. G., Cleavable linkers for porous silicon-based mass spectrometry. Angew Chem Int Edit 2004, 43 (10), 1255-1260.
58. Zhang, W.; Nowlan, D. T.; Thomson, L. M.; Lackowski, W. M.; Simanek, E. E., Orthogonal, convergent syntheses of dendrimers based on melamine with one or two unique surface sites for manipulation. J Am Chem Soc 2001, 123 (37), 8914-8922.
59. Shmigol, I. V.; Alekseev, S. A.; Lavrynenko, O. Y.; Vasylieva, N. S.; Zaitsev, V. N.; Barbier, D.; Pokrovsky, V. A., Chemically modified porous silicon for laser desorption/ionization mass spectrometry of ionic dyes. J Mass Spectrom 2009, 44 (8), 1234-1240.
60. Go, E. P.; Apon, J. V.; Luo, G. H.; Saghatelian, A.; Daniels, R. H.; V, S.; Dubrow, R.; Cravatt, B. F.; Vertes, A.; Siuzdak, G., Desorption/ionization on silicon nanowires. Analytical Chemistry 2005, 77 (6), 1641-1646.
61. Li, X.; Bohn, P. W., Metal-assisted chemical etching in HF/H2O2 produces porous silicon. Applied Physics Letters 2000, 77 (16), 2572-2574.
62. Chen, W. Y.; Huang, J. T.; Cheng, Y. C.; Chien, C. C.; Tsao, C. W., Fabrication of nanostructured silicon by metal-assisted etching and its effects on matrix-free laser desorption/ionization mass spectrometry. Anal Chim Acta 2011, 687 (2), 97-104.
63. Temporini, C.; Callerli, E.; Massolini, G.; Caccialanza, G., Integrated analytical strategies for the study of phosphorylation and glycosylation in proteins. Mass Spectrom Rev 2008, 27 (3), 207-236.
64. Graves, J. D.; Krebs, E. G., Protein phosphorylation and signal transduction. Pharmacol Therapeut 1999, 82 (2-3), 111-121.
65. Puttick, J.; Baker, E. N.; Delbaere, L. T. J., Histidine phosphorylation in biological systems. Bba-Proteins Proteom 2008, 1784 (1), 100-105.
66. Reinders, J.; Sickmann, A., State-of-the-art in phosphoproteomics. Proteomics 2005, 5 (16), 4052-4061.
67. Thingholm, T. E.; Jensen, O. N.; Larsen, M. R., Analytical strategies for phosphoproteomics. Proteomics 2009, 9 (6), 1451-1468.
68. Hanahan, D.; Weinberg, R. A., The hallmarks of cancer. Cell 2000, 100 (1), 57-70.
69. Su, H. C.; Hutchison, C. A.; Giddings, M. C., Mapping phosphoproteins in Mycoplasma genitalium and Mycoplasma pneumoniae. Bmc Microbiol 2007, 7 (63), 1-15.
70. Tibaldi, E.; Brunati, A. M.; Massimino, M. L.; Stringaro, A.; Colone, M.; Agostinelli, E.; Arancia, G.; Toninello, A., Src-tyrosine kinases are major agents in mitochondrial tyrosine phosphorylation. J Cell Biochem 2008, 104 (3), 840-849.
71. Hunter, T.; Sefton, B. M., Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc Natl Acad Sci U S A 1980, 77 (3), 1311-1315.
72. Sevecka, M.; MacBeath, G., State-based discovery: a multidimensional screen for small-molecule modulators of EGF signaling. Nat Methods 2006, 3 (10), 825-831.
73. Zhou, H. L.; Watts, J. D.; Aebersold, R., A systematic approach to the analysis of protein phosphorylation. Nat Biotechnol 2001, 19 (4), 375-378.
74. Thaler, F.; Valsasina, B.; Baldi, R.; Jin, X.; Stewart, A.; Isacchi, A.; Kalisz, H. M.; Rusconi, L., A new approach to phosphoserine and phosphothreonine analysis in peptides and proteins: chemical modification, enrichment via solid-phase reversible binding, and analysis by mass spectrometry. Anal Bioanal Chem 2003, 376 (3), 366-373.
75. Wang, Q.; Shen, J.; Li, Z. F.; Jie, J. Z.; Wang, W. Y.; Wang, J.; Zhang, Z. T.; Li, Z. X.; Yan, L.; Gu, J., Limitations in SELDI-TOF MS whole serum proteomic profiling with IMAC surface to specifically detect colorectal cancer. Bmc Cancer 2009, 9 (287), 1-9.
76. Porath, J.; Carlsson, J.; Olsson, I.; Belfrage, G., Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 1975, 258 (5536), 598-599.
77. Hochuli, E.; Dobeli, H.; Schacher, A., New metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues. J Chromatogr 1987, 411, 177-184.
78. Andersson, L.; Porath, J., Isolation of phosphoproteins by immobilized metal (Fe3+) affinity chromatography. Anal Biochem 1986, 154 (1), 250-254.
79. Ficarro, S. B.; McCleland, M. L.; Stukenberg, P. T.; Burke, D. J.; Ross, M. M.; Shabanowitz, J.; Hunt, D. F.; White, F. M., Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol 2002, 20 (3), 301-305.
80. Trinidad, J. C.; Specht, C. G.; Thalhammer, A.; Schoepfer, R.; Burlingame, A. L., Comprehensive identification of phosphorylation sites in postsynaptic density preparations. Mol Cell Proteomics 2006, 5 (5), 914-922.
81. Kokubu, M.; Ishihama, Y.; Sato, T.; Nagasu, T.; Oda, Y., Specificity of immobilized metal affinity-based IMAC/C18 tip enrichment of phosphopeptides for protein phosphorylation analysis. Analytical Chemistry 2005, 77 (16), 5144-5154.
82. Larsen, M. R.; Thingholm, T. E.; Jensen, O. N.; Roepstorff, P.; Jorgensen, T. J. D., Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics 2005, 4 (7), 873-886.
83. Jensen, S. S.; Larsen, M. R., Evaluation of the impact of some experimental procedures on different phosphopeptide enrichment techniques. Rapid Commun Mass Sp 2007, 21 (22), 3635-3645.
84. Thingholm, T. E.; Jensen, O. N.; Robinson, P. J.; Larsen, M. R., SIMAC (sequential elution from IMAC), a phosphoproteomics strategy for the rapid separation of monophosphorylated from multiply phosphorylated peptides. Mol Cell Proteomics 2008, 7 (4), 661-671.
85. Xu, Y. D.; Watson, J. T.; Bruening, M. L., Patterned monolayer/polymer films for analysis of dilute or salt-contaminated protein samples by MALDI-MS. Analytical Chemistry 2003, 75 (2), 185-190.
86. Dunn, J. D.; Igrisan, E. A.; Palumbo, A. M.; Reid, G. E.; Bruening, M. L., Phosphopeptide enrichment using MALDI plates modified with high-capacity polymer brushes. Analytical Chemistry 2008, 80 (15), 5727-5735.
87. Wang, W. H.; Bruening, M. L., Phosphopeptide enrichment on functionalized polymer microspots for MALDI-MS analysis. Analyst 2009, 134 (3), 512-518.
88. Li, Y.; Leng, T. H.; Lin, H. Q.; Deng, C. H.; Xu, X. Q.; Yao, N.; Yang, P. Y.; Zhang, X. M., Preparation of Fe3O4@ZrO2 core-shell microspheres as affinity probes for selective enrichment and direct determination of phosphopeptides using matrix-assisted laser desorption ionization mass spectrometry. J Proteome Res 2007, 6 (11), 4498-4510.
89. Liu, J. C.; Tsai, P. J.; Lee, Y. C.; Chen, Y. C., Affinity capture of uropathogenic Escherichia coli using pigeon ovalbumin-bound Fe3O4@Al2O3 magnetic nanoparticles. Analytical Chemistry 2008, 80 (14), 5425-5432.
90. Li, Y.; Lin, H. Q.; Deng, C. H.; Yang, P. Y.; Zhang, X. M., Highly selective and rapid enrichment of phosphorylated peptides using gallium oxide-coated magnetic microspheres for MALDI-TOF-MS and nano-LC-ESI-MS/MS/MS analysis. Proteomics 2008, 8 (2), 238-249.
91. Dunn, J. D.; Reid, G. E.; Bruening, M. L., Techniques for Phosphopeptide Enrichment Prior to Analysis by Mass Spectrometry. Mass Spectrom Rev 2010, 29 (1), 29-54.
92. Edman, P., A method for the determination of amino acid sequence in peptides. Arch Biochem 1949, 22 (3), 475.
93. Mann, M.; Hojrup, P.; Roepstorff, P., Use of Mass-Spectrometric Molecular-Weight Information to Identify Proteins in Sequence Databases. Biol Mass Spectrom 1993, 22 (6), 338-345.
94. Williamson, B. L.; Marchese, J.; Morrice, N. A., Automated identification and quantification of protein phosphorylation sites by LC/MS on a hybrid triple quadrupole linear ion trap mass spectrometer. Mol Cell Proteomics 2006, 5 (2), 337-346.
95. Aebersold, R.; Mann, M., Mass spectrometry-based proteomics. Nature 2003, 422 (6928), 198-207.
96. Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M., Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chemical Reviews 2005, 105 (4), 1103-1169.
97. Dunn, J. D.; Igrisan, E. A.; Palumbo, A. M.; Reid, G. E.; Bruening, M. L., Phosphopeptide Enrichment Using MALDI Plates Modified with High-Capacity Polymer Brushes. Analytical Chemistry 2008, 80 (15), 5727-5735.
98. Sam, S.; Touahir, L.; Andresa, J. S.; Allongue, P.; Chazalviel, J. N.; Gouget-Laemmel, A. C.; de Villeneuve, C. H.; Moraillon, A.; Ozanam, F.; Gabouze, N.; Djebbar, S., Semiquantitative Study of the EDC/NHS Activation of Acid Terminal Groups at Modified Porous Silicon Surfaces. Langmuir 2010, 26 (2), 809-814
99. Glazer, A. N., Bioconjugate techniques - Hermanson,GT. Nature 1996, 381 (6580), 290-290.
100. Shen, Z. X.; Thomas, J. J.; Averbuj, C.; Broo, K. M.; Engelhard, M.; Crowell, J. E.; Finn, M. G.; Siuzdak, G., Porous silicon as a versatile platform for laser desorption/ionization mass spectrometry. Analytical Chemistry 2001, 73 (3), 612-619.
101. Tuomikoski, S.; Huikko, K.; Grigoras, K.; Ostman, P.; Kostiainen, R.; Baumann, M.; Abian, J.; Kotiaho, T.; Franssila, S., Preparation of porous n-type silicon sample plates for desorption/ionization on silicon mass spectrometry (DIOS-MS). Lab Chip 2002, 2 (4), 247-253.
102. Liu, Q.; He, L., Quantitative Study of Solvent and Surface Effects on Analyte Ionization in Desorption Ionization on Silicon (DIOS) Mass Spectrometry. Journal of The American Society for Mass Spectrometry 2008, 19 (1), 8-13.
103. Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D., Handbook of X-Ray Photoelectron Spectroscopy. Perkin-Elmer Corp.: Eden Prairie, 1992.
104. Kruse, R. A.; Li, X. L.; Bohn, P. W.; Sweedler, J. V., Experimental factors controlling analyte ion generation in laser desorption/ionization mass spectrometry on porous silicon. Analytical Chemistry 2001, 73 (15), 3639-3645.
105. Gaberc-Porekar, V.; Menart, V., Perspectives of immobilized-metal affinity chromatography. J Biochem Bioph Meth 2001, 49 (1-3), 335-360.
106. Nieba, L.; NiebaAxmann, S. E.; Persson, A.; Hamalainen, M.; Edebratt, F.; Hansson, A.; Lidholm, J.; Magnusson, K.; Karlsson, A. F.; Pluckthun, A., BIACORE analysis of histidine-tagged proteins using a chelating NTA sensor chip. Anal Biochem 1997, 252.
107. Ueda, E. K.; Gout, P. W.; Morganti, L., Current and prospective applications of metal ion-protein binding. J Chromatogr A 2003, 988 (1), 1-23.
|