參考文獻 |
[1] T. Yasuda, S. Yamasaki, and S. Gwo, “Nanoscale selective-area epitaxl growth of Si using an ultrathin SiO2/Si3Ni4 mask patterned by an atomic force microscope,” Appl. Phys. Lett. 77 (2000) 3917-3919.
[2] J. I. Martin, J. Nogues, K. Liu, J. L. Vicent, and I. K. Schuller, “Ordered magnetic nanostructures: fabrication and properties,” J. Magn. Magn. Mater. 256 (2003) 449-501.
[3] W. Ma, D. Hesse, and U. Gösele, “Formation of ferroelectric perovskite nanostructure patterns using latex sphere monolayers as masks: an ambient gas pressure effect during pulsed laser deposition,” small 1 (2005) 837–841.
[4] N. Li and M. Z. Allmang, “Size-tunable Ge nano-particle arrays patterned on Si substrates with nanosphere lithography and thermal annealing,” J. Appl. Phys. 41 (2002) 4626–4629.
[5] Q. Yan, F. Liu, L. Wang, J. Y. Lee, and X. S. Zhao, “Drilling nanoholes in colloidal spheres by selective etching,” J. Mater. Chem. 16 (2006) 2132–2134.
[6] A. Winkleman, B. D. Gates, L. S. McCarty, and G. M. Whitesides, “Directed self-assembly of spherical particles on patterned electrodes by an applied electric field,” Adv. Mater. 17 (2005) 1507-1511.
[7] K. L. Wang, T. C. Holloway, R. F. Pinizzotto, Z. P. Sobczak, W. R. Hunter, and A. F. Tash, “Composite TiSi2/n+ poly-Si low-resistivity gate electrode and interconnect for VLSI device technology,” IEEE Trans. Electron Device 29 (1982) 547-553.
[8] M. A. Nicolet and S. S. Lau (1983) “Materials Pocess and Characterization Ed,” N. G. Einspruch, G. R. Larrabee (Academic, New York) p.329-464.
[9] L. J. Chen (2004) “Silicide technology for integrated circuits,” London, U. K., MPG Books Limited, Bodmin, Cornwall, p.18-19.
[10] L. J. Chen (2004) “Silicide technology for integrated circuits,” London, U. K., MPG Books Limited, Bodmin, Cornwall, p.19-20.
[11] R. W. Mann, L. A. Clevenger, P. D. Agnello, and F. R. White, “Silicides and local interconnections for high performance VLSI applications,” IBM Journal of Research and Development 39 (1995) 403-417.
[12] 林鴻志,「深次微米閘極技術之發展與未來驅勢(II)」,奈米通訊,第五卷,第三期。
[13] M. H. Wang and L. J. Chen, “Phase formation in the interfacial reactions of ultrahigh vacuum deposited Titanium thin films on (111)Si,” J. Appl. Phys.(USA) 71 (1992) 5918-5925.
[14] R. Beyers and R. Sinclair, “Metastable phase formation in Titanium-Silicon thin films,” J. Appl. Phy. 57 (1985) 5240-5245.
[15] T. Ohguro, S. I. Nakamura, M. Koike, T. Morimoto, A. Nishiyama, Y. Ushiku, T. Yoshitomi, M. Ono, M. Saito, and H. Iwai, “Analysis of resistance behavior in Ti and Ni-salicided polysilicon films,” IEEE Tran. Electron Devices ED-41 (1994) 2305-2317.
[16] J. B. Lasky, J. S. Nakos, O. J. Cain and P. J. Geiss, “Comparison of transformation to low-resistivity phase and agglomeration of TiSi2 and CoSi2,” IEEE Tran. Electron Devices, ED-38 (1991) 262.
[17] K. Fukasaku, A. Ono, T. Hirai, Y. Yasuda, N. Okada, S. Koyama, T. Tamura, Y. Yamada, T. Nakata, M. Yamana, N. Ikezawa, T. Matsuda, K. Arita, H. Nambu, A. Nishizawa, K. Nakabeppu, and N. Nakamura, “UX6-100 nm generation CMOS integration technology with Cu/low-k interconnect,” ULSI Device Dev. Div. (2002) 64-65.
[18] K. Inoue, K. Mikagi, H. Abiko and T. Kikkawa, “A new Cobalt salicide technology for 0.15 μm CMOS using high-temperature sputtering and in-situ vacuum annealing,” IEDM Tech. Dig. 45 (1995) 445-448.
[19] K. Goto, A. Fushida, J. Watanabe, T. Sukegawa, K. Kawamura, T. Yamazaki and T. Sugii, “Leakage mechanism and optimized conditioms of Co salicide process for deep-submicron CMOS devices,” Proc. IEDM 45 (1995) 449-452.
[20] Q. Z. Hong, W. T. Shiau, H. Yang, J. A. Kittl, C. P. Chao, H. L. Tsai, S. Krishnan, I. C. Chen, and R. H. Havemann, “CoSi2 with low diode leakage and low sheet resistance at 0.065 μm gate length,” Proc. IEDM 97 (1997) 107-110.
[21] L.J. Chen, (2004) “Silicide technology for integrated circuits,” London, U. K., MPG Books Limited, Bodmin, Cornwall, p.88.
[22] C. Detavernier, R. L. Van Meirhaeghe, F. Cardon, and K. Maex, “CoSi2 formation through SiO2,” Thin Solid Films 386 (2001) 19-26.
[23] K. Maex, “Silicides for integrated circuits: TiSi2 and CoSi2,” Mater. Sc. Eng. R 11 (1993) 53-153.
[24] L. J. Chen (2004) “Silicide technology for integrated circuits,” London, U. K., MPG Books Limited, Bodmin, Cornwall, p.96-97.
[25] A. Lauwers, P. Besser, T. Gutt, A. Satta, M. De Potter, R. Lindsay, N. Roelandts, F. Loosen, S. Jin, H. Bender, M. Stucchi, C. Vrancken, B. Deweerdt, and K. Maex, “Comparative study of Ni-Silicide and Co-Silicide for sub 0.25-μm technologies,” Microelectronic Engineering. 50 (2000) 103-116.
[26] L. J. Chen (2004) “Silicide technology for integrated circuits,” London, U. K., MPG Books Limited, Bodmin, Cornwall, p.98-99.
[27] T. Ernst, F. Ducroquet, J. M. Hartmann, O. Weber, V. Loup, R. Truche, A. M. Papon, P. Holliger, B. Previtali, A. Toffoli, J. L. Di Maria, and S. Deleonibus, “A new Si:C epitaxial channel nMOSFET architecture with improved drivability and short-channel characteristics,” VLSI Symp. Tech. Dig. (2003) 51–52.
[28] K. -W. Ang, K. -J. Chui, V. Bliznetsov, A. Du, N. Balasubramanian, M. F. Li, G. Samudra, and Y. -C. Yeo, “Enhanced performance in 50 nm n-MOSFETs with silicon-carbon source/drain regions,” IEDM Tech.Dig. (2004) 1069–1071.
[29] H. J. Osten, G. Lippert, J. P. Liu, and D. Kruger, “Influence of Carbon incorporation on dopant surface segregation in molecular-beam epitaxial growth of silicon,” Appl. Phys. Lett. 77 (2000) 2000–2002.
[30] 林宏年,呂嘉裕,林鴻志,黃調元,「局部與全面形變矽通道(strained Si channel) 互補式金氧半(CMOS) 之材料、製程與元件特性分析(I)」,奈米通訊,第十二卷,第一期,44~49頁。
[31] M. Chu, Y. Sun, U. Aghoram, S. E. Thompson, “Strain: asolution for higher carrier mobility in nanoscaleMOSFETs,”Annual Review of Materials Research 39 (2009) 203-229.
[32] Wee Chee, S. Maikop, and C. -Y. Yu, “Mobility-enhancement technologies,” Circuits and Devices Magazine, IEEE 21 (2005) 21-36.
[33] S. Thompson, G. Sun, K. Wu, J. Lim, and T. Nishida, “Key differences for process-induced uniaxial vs. substrate-induced biaxial stressed Si and Ge channel MOSFETs,” IEDM Tech. Dig. (2004) 221-224.
[34] O. Nakatsuka, K. Okubo, A. Sakai, M. Ogawa, Y. Yasuda, and S. Zaima, “Improvement in NiSi/Si contact properties with C-implantation,” Microelectron. Eng. 82 (2005) 479-484.
[35] V. Machkaoutsan, S. Mertens, M. Bauer, A. Lauwers, K. Verheyden, K. Vanormelingen, P. Verheyen, R. Loo, M. Caymax, S. Jakschik, D. Theodore, P. Absil, S. G. Thomas, and E. H. A. Granneman, “Improved thermal stability of Ni-silicides on Si:C epitaxial layers,” Microelectron. Eng. 84 (2007) 2542-2546.
[36] S. W. Lee, S. H. Huang, S. L. Cheng, P. S. Chen, and W. W. Wu, “Ni silicide formation on epitaxial Si1−yCy/(001) layers,” Thin Solid Films 518 (2010) 7394-7397.
[37] C. Chen, Electron Beam Lithography for Nanoelectronics,奈米設備與檢測研討會(http://nano-taiwan.sinica.edu.tw/2003NanoConferences.ASP)
[38] A. J. Haes, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: self-assembled photonic and magnetic materials,” Mat. Res. Soc. Symp. 636 (2001) 1-6.
[39] M. Ratner and D. Ratner, “Nanotechnology: a gentle introduction to the next big idea,” Chapter 4, 2003, Prentice Hall.
[40] 廖明吉,「0.1微米世代的微影解決方法奈米通訊」,第五卷,第四期,28~32頁。
[41] E. Miyauchi, H. Arimoto, and H. Kitada, “Ion species and energy control of finely focused RBs for maskless in situ microfabrication processes,” Nucl. Instrum. Methods B39 (1989) 515-520.
[42] J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103 (1999) 3854-3863.
[43] G. Horneck and B. K. Christa (2001) “Astrobiology: the quest for the conditions of life, part vcomplexity and life, molecular self-assembly and the origin of life,” Spriger press, p.360-372.
[44] G. M. Whitesides and B. Grzybowski, “Self-assembly at all scales,” Science 295 (2002) 2418-2421.
[45] S. M. Yang, N. Coombs, and G. A. Ozin, “Micromolding in inverted polymer opals (MIPO): synthesis of hexagonal mesoporous silicaopals,” Adv. Mater. 12 (2000) 1940-1944.
[46] H. J. Nam, D. Y. Jung, G. Y, and H. Choi, “Close-packed hemispherical microlens Array from two-dimensional ordered polymeric microspheres,” Langmuir 22 (2006) 7358-7363.
[47] F. Fleischhaker, A. C. Arsenault, Z. Wang, V. Kitaev, F. C. Peiris, G. V. Freymann, I. Manners, R. Zentel, and G. A. Ozin, “Redox-tunable defects in colloidalphotonic crystals,”Adv. Mater. 17 (2005) 2455–2458.
[48] J. Dutta and H. Hofmann, “Self-organization of colloidal nanoparticles,” Encyclopedia of Nanosci. And Nanotech. X (2003) 1–23.
[49] F. Jarai-Szabo, S. Astilean and Z. Neda, “Understanding self-assembled nanosphere patterns,” Chem. Phys. Lett. 408 (2005) 241–246.
[50] N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of frmation of two-dimensional crystals from latex particles on substrates,” Langmuir 8 (1992) 3183-3190.
[51] P. A. Kralchevsky, V. N. Paunov, I. B. Ivanov, and K. Nagayama, “Capillary meniscus interactions between colloidal particles attached to a liquid-fluid interface,” J. Colloid Interface Sci. 151 (1992) 79-94.
[52] P. A. Kralchevsky, V. N. Paunov, N. D. Denkov, I. B. Ivanov, and K. Nagayama, “Energetical and force approaches to the capillary interactions between particles attached to a liquid-fluid interface,” J. Colloid Interface Sci. 155 (1993) 420-437.
[53] P. A. Kralchevsky and K. Nagayama, “Capillary forces between colloidal particles,” Langmuir 10 (1994) 23-36.
[54] K. Nagayama, “Two-dimensional self-assembly of colloids in thin liquid films,” Colloids Surf. A 109 (1996) 363-374.
[55] H. W. Deckman, and J. H. Dunsmuir, “Natural lithography," Appl. Phys. Lett. 41 (1982) 377-379.
[56] J. C. Hulteen, and R. P. van Duyne, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13 (1995) 1553-1558.
[57] N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of formation of two-dimensional crystals from latex-particles on substrates,” Langmuir 8 (1992) 3183-3190.
[58] R. Micheletto, H. Fukuda , and M. Ohtsu, "A simple method for the production of a two-dimensional, ordered array of small latex particles," Langmuir 11 (1995) 3333-3336.
[59] J. Rybczynski, U. Ebels, and M. Giersig, “Large-scale, 2D arrays of magnetic nanoparticles,” Colloids Surf. Physicochem. Eng. Aspects 219 (2003) 1-6.
[60] R. P. V. Duyne, J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, and T. R. Jensen, “Nanosphere lithography: Size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103 (1999) 3854-3863.
[61] V. Ng, Y. V. Lee, B. T. Chen, and A. O. Adeyeye, “Nanostructure array fabrication with temperature-controlled self-Assembly techniques,” Nanotechnology 13 (2002) 554-558.
[62] D. Wang and H. Mohwald, “Rapid fabrication of binary colloidal crystals by stepwise spin-coating,” Adv. Mater. 16 (2004) 244-247.
[63] F. Burmeister, C. Schäfle, T. Matthes, M. Böhmisch, J. Boneberg, and P. Leiderer, “Colloid monolayers as versatile lithographic masks,” Langmuir 13 (1997) 2983-2987.
[64] A. Winkleman, B. D. Gates, L. S. McCarty, and G. M. Whitesides, “Directed self-assembly of spherical particles on patterned electrodes by an applied electric field,” Adv. Mater. 17 (2005) 1507-1511.
[65] R. Xie and X. Y. Liua, “Epitaxial assembly and ordering of two-dimensional colloidal crystals,” Appl. Phys. Lett. 92 (2008) 083106-1-3.
[66] X. H. Xia, J. P. Tu, J. Y. Xiang, X. H. Huang, X. L. Wang, and X. B. Zhao, “Hierarchical porous cobalt oxide array films prepared by electrodeposition through polystyrene sphere template and their applications for lithium ion batteries,” Journal of Power Sources 195 (2010) 2014-2022.
[67] H. Yan, Y. Yang, Z. Fu, B. Yang, L. Xia, S. Fu, and F. Li, “Fabrication of 2D and 3D ordered porous ZnO films using 3D opal templates by electrodeposition,” Electrochemistry Communications 7 (2005) 1117-1121.
[68] M. A. Ghanem, P. N. Bartlett, P. de Groot, and A. Zhukov, “A double templated electrodeposition method for the fabrication of arrays of metal nanodots,” Electrochemistry Communications 6 (2004) 447-453.
[69] Z. Chen, P. Zhan, Z. Wang, J. Zhang, W. Zhang, N. Ming, C. Ting, and P. Sheng, “Two-and three-dimensional ordered structures of hollow silver spheres prepared by colloidal crystal templating,” Adv. Mater. 16 (2004) 417-422.
[70] S. Zhu and Y. Fu, “Fabrication and characterization of nanostructured metallic arrays with multi-shapes in monolayer and bilayer,” J. Nanopart. Res. 12 (2010) 1829-1835.
[71] J. C. Hulteen, and R. P. Van Duyne, “Nanosphere lithpography: A materials general fabrication process for periodic particle array surface,” J. Vac. Sci. Technol. A 13 (1995) 1553-1558.
[72] A. Kosiorek, W. Kandulski, H. Glaczynska, and M. Giersig, “Fabrication of nanoscale rings, dots, and rods by combining shadow nanosphere lithography and annealed polystyrene nanosphere masks,” Small 4 (2005) 439-444.
[73] X. D. Wang, E. Graugnard, J. S. King, Z. L. Wang, and C. J. Summers, “Large-scale fabrication of ordered nanobowl arrays,” Nano Lett. 4 (2004) 2223-2226.
[74] F. Q. Zhu, D. Fan, X. Zhu, J. G. Zhu, R. C. Cammarata, and C. L. Chien, “Ultrahigh-density arrays of ferromagnetic nanorings on macroscopic areas,” Adv. Mater. 16 (2004) 2155-2159.
[75] D. Byrne, A. Schilling, J. F. Scott , and J. M. Gregg, “Ordered arrays of lead Zirconium Titanate,” Nanotechnology 19 (2008) 165608-1-5.
[76] Y. Zhang, X. Wang, and Y. Wang, “Ordered nanostructures array fabricated by nanosphere lithography,” J. Alloys Compd. 452 (2008) 473-477.
[77] K. Kempa, B. Kimball, J. Rybczynski, Z. P. Huang, P. F. Wu, D. Steeves, M. Sennett, M. Giersig, D. V. G. L. N. Rao, D. L. Carnahan, D. Z. Wang, J. Y. Lao, W. Z. Li, and Z. F. Ren, “Photonic crystals based on periodic arrays of aligned carbon nanotubes,” Nano Lett. 3 (2003) 13-18.
[78] K. H. Park, S. Lee, K. H. Koh, R. L. KBK, and T. W. Milne, “Advanced nanosphere lithography for the areal-density variation of periodic arrays of vertically aligned carbon nanofibers,” J. Appl. Phys. 97 (2005) 024311-024314.
[79] Y. Li, E. J. Lee, W. Cai, K. Y. Kim, and S. O. Cho,“Unconventional method for morphology-controlled carbonaceous nanoarrays based on electron irradiation of a polystyrene colloidal monolayer,” ACSNano 2 (2008) 1108-1112.
[80] Y. Li, N. Koshizaki, Y. Shimizu, L. Li, S. Y. Gao, and T. Sasaki, “Unconventional lithography for hierarchial micro/nanostructure arrays with well-aligned 1D crystalline nanostructures: Design and creation based on the colloidal monolayer,” ACS Appl. Mater. Inter. 1 (2009) 2580-2585.
[81] C. M. Zhou and D. Gall, “Surface patterning by nanosphere lithography for layer growth with ordered pores,” Thin Solid Films 516 (2007) 433-437.
[82] M. A. Green (1982) “Solar Cells: Operating pinciples, technology, and system application,” Prentice-Hall Inc., Englewood Cliffs, NJ, p.164.
[83] R. A. Arndt, J. F. Allison, J. G. Haynos, A. Meulenberg, “Optical properties of the COMSAT non-reflective cell,” Proceedings of 11th IEEE International Specialist Conference, New York (1975) 40.
[84] P. Verlinden, O. Evrard, E. Mazy, A. Crahay, “The surface texturization of solar cells: A new method using v-grooves with controllable sidewall angles,” Sol. Energy Mater. Sol. Cells 26 (1992) 71-78.
[85] D. L. King and Buck, “Experimental optimization of an anisotropic etching process for random texturization of silicon solar cells,” Proceedings of 22nd IEEE International Photovoltaic Specialists Conference, Las Vegas (1991) 303-308.
[86] U. Gangopadhyay, K. H. Kim, S. K. Dhungel, U. Manna, P. K. Basu, M. Banerjee, H. Saha and J. Yi, “A novel low cost texturization method for large area commercial mono-crystalline silicon solar cells,” Solar Energy Materials and Solar Cells 90 (2006) 3557–3567.
[87] I. Zubel and M. Kramkowska, “Development of etch hillocks on different Si(hkl) planes in silicon anisotropic etching,” Surf. Sci. 602 (2008) 1712–1721.
[88] B. Wang, S. J. Chua, and J. Teng, “Novel 2D ordered arrays of nanostructures fabricated through silica masks formed by bilayer colloidal crystals as templates,” IEEE 2 (2005) 717-720.
[89] S. M. Yang, D. G. Choi, S. G. Jang, S. Kim, E. Lee, and C. S. Han, “Multifaceted and nanobored particle arrays sculpted using colloidal lithography,” Adv. Funct. Mater. 16 (2006) 33-40.
[90] S. M. Yang, D. G. Choi, S. Kim, and E. Lee, “Particle arrays with patterned pores by nanomachining with colloidal masks,” J. Am. Chem. Soc. 127 (2005) 1636-1637.
[91] A. Sinitskii, S. Neumeier, J. Nelles, M. Fischler, and U. Simon, “Ordered arrays of silicon pillars with controlled height and aspect ratio,” Nanotechnology 18 (2007) 305307-1~305307-6.
[92] J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9 (2009) 279-282.
[93] W. Li, J. Zhou, X. G. Zhang, J. Xu, L. Xu, W. Zhao, P. Sun, F. Song, J. Wan, and K. Chen, “Field emission from a periodic amorphous silicon pillar array fabricated by modified nanosphere lithography,” Nanotechnology 19 (2008) 135308-1~135308-5.
[94] C. M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by langmuir-blodgett assembly and etching,” Appl. Phys. Lett. 93 (2008) 133109-1~133109-3.
[95] Z. Huang, H. Fang, and J. Zhu, “Fabrication of silicon nanowire arrays with controlled diameter, length, and density,” Adv. Mater. 19 (2007) 744–748.
[96] C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105 (2001) 5599-5611.
[97] J. H. He, Y. L. Chueh, W. W. Wu, S. W. Lee, L. J. Chen, and L. J. Chou, “The growth of SiGe quantum rings in Au thin filmson epitaxial SiGe on silicon,” Thin Solid Films 469-470 (2004) 478-482.
[98] J. H. He, W. W. Wu, Y. L. Chueh, C. L. Hsin, L. J. Chen, and L. J. Chou, “Formation and evolution of self-assembled crystalline Si nanoringson (001)Si mediated by Au nanodots,”Appl. Phys. Lett. 87 (2005) 223102-1~223102-2.
[99] J. T. Robinson, P. G. Evans, J. A. Liddle, and O. D. Dubon, “Chemical nanomachining of silicon by gold-catalyzed oxidation,” Nano Lett. 7 (2007) 2009-2013.
[100] M. R. Baklanov, I. A. Badmaeva, R. A. Donaton, L. L. Sveshnikova, W. Storm, and K. Maex, “Kinetics and mechanism of the etching of CoSi2 in HF-based solutions,” J. Electrochem. Soc. 143 (1996) 3245-3251.
[101] S. Y. Zhu, G. P. Ru, C. Detavernier, R. L. Van Meirhaeghe, E. Cardon, and B. Z. Li, “The dependence of the etching property of CoSi2 films in diluted HF solutions on the formation conditions,” Appl. Surf. Sci. 178 (2001) 44-49.
[102] X. Fan, G. Zeng, C. L. Bounty, J. E. Bowers, E. Croke, and C. C. Ahn, “A SiGeC/Si superlattice microcoolers,” Appl. Phys. Lett. 78 (2001) 1580-1582.
[103] H. C. Chen, C. W. Wang, S. W. Lee, and L. J. Chen, “Pyramid-shaped Si/Ge superlattice quantum dots with enhanced photoluminescence properties,” Adv. Mater. 18 (2006) 367-370.
[104] H. -W. Kim, S. Choi, S. Hong, H. K. Jung, G. -D. Lee, E. Yoon, and C. S. Kim, “Effect of C incorporation on relaxation of SiGe/Si,” Appl. Phys. Lett. 93 (2008) 221902-221903.
[105] W. -S. Liao, Y. -G. Liaw, M. -C. Tang, K. -M. Chen, S. -Y. Huang, C. -Y. Peng, C. , and W. Liu, “PMOS hole mobility enhancement through SiGe conductive channel and highly compressive ILD-SiNx stressing layer,” IEEE Electron Device Lett. 29 (2008) 86-88.
[106] R. W. Mann, L. A. Clevenger, P. D. Agnello, and F. R. White, “Silicides and local interconnections for high performance VLSI applications,” IBM Journal of Research and Development 39 (1995) 403-417.
[107] M. Marquez and B. P. Grady, “The use of surface tension to predict the formation of 2d arrays of latex spheres formed via the langmuir-blodgett-Like technique,” Langmuir 20 (2004) 10998-11004.
[108] S. L. Cheng, S. W. Lu, C. H. Li, Y. C. Chang, C. K. Huang, and H. Chen,“Fabrication of periodic nickel silicide nanodot arrays using nanosphere lithography,”Thin Solid Films 494 (2006) 307–310.
|