博碩士論文 983209006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:3.145.85.216
姓名 吳政鴻(Cheng-Hung Wu)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 超臨界流體合成鈀/石墨烯/離子液體之複合材料的電化學生化感測特性
(Supercritical Fluid Synthesized Pd/Graphene/Ionic Liquid Nanocomposites for Electrochemical Biosensing)
相關論文
★ 以超臨界流體製備金屬觸媒/奈米碳管複合材料並探討其添加對氫化鋁鋰放氫特性的影響★ 陽極沉積釩氧化物於離子液體中之擬電容行為
★ 以電化學沉積法製備奈米氧化釩及錫在多孔鎳電極上與其儲電特性★ 以超臨界流體製備石墨烯/金屬複合觸媒並 探討其添加對氫化鋁鋰放氫特性的影響
★ 離子液體電解質應用於石墨烯超級電容之特性分析★ 溶劑熱法合成三硫化二銻複合材料應用於鈉離子電池負極
★ 利用超臨界流體製備二氧化錫/石墨烯奈米複合材料 應用於鈉離子電池負極★ 電解質添加劑對鋅二次電池陽極電化學性質的影響
★ 電化學法所製備石墨烯及其硼摻雜改質之 超級電容特性分析★ 氫化二氧化鈦作為鋰、鈉、鎂鋰雙離子電池電極活性材料之電化學性質研究
★ 活性碳之粒徑與表面官能基以及所搭配的電解質配方對超高電容特性之影響★ 超臨界CO2合成SnO2、CoCO3與石墨烯複合材之儲鋰特性及陽極沉積層狀V2O5之儲鈉特性研究
★ 高濃度電解質於鋰電池知應用研究★ 熱解法製備硬碳材料應用於鈉離子電池負極
★ 活性碳粉之表面官能基及粒徑尺寸 對超高電容特性的影響★ 離子液體電解質於鈉離子電池之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以石墨烯(graphene)為基材,利用超臨界二氧化碳(supercritical carbon dioxide, scCO2)合成鈀奈米粒子於其上,製成複合材料。超臨界二氧化碳具良好濕潤性之優點,合成之奈米粒子能均勻分散在石墨烯基材上,大幅地增加反應表面積。研究結果顯示,利用超臨界流體製備之複合材料,應用於非酵素型(non-enzymatic)電化學生化感測,擁有良好的偵測感度。
超臨界流體合成鈀奈米粒子披覆於不同的碳基材上-石墨烯與多壁奈米碳管,分別感測抗壞血酸(ascorbic acid, AA)、多巴胺(dopamine, DA)與尿酸(uric acid, UA),石墨烯的感測靈敏度略小於多壁奈米碳管;藉由離子液體的輔助,實驗數據顯示,可增強其電子傳遞動能與效率,大幅地改善兩者的電化學訊號,其中利用石墨烯做為載體能獲得比多壁奈米碳管者更佳的感測性能。
超臨界二氧化碳合成之鈀/石墨烯(scCO2 Pd/Graphene)複合材料為感測電極材料,使用五種不同離子液體輔助,分別為1-butyl-3-methylimidazolium hexafluorophosphate (BMI-PF6)、1-butyl-1-methylpyrrolidinium bis((trifluoromethyl)sulfonyl)imide (BMP-NTf2)、1-butyl-1-methylpyrrolidinium dicyanamide (BMP-DCA)、1-ethyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)imide (EMI-NTf2)與1-ethyl-3-methylimidazolium dicyanamide (EMI-DCA),並就離子液體對感測的影響做系統性地探討。透過結合不同離子液體輔助,同時感測接近人體血液濃度之抗壞血酸、多巴胺與尿酸,EMI-DCA與BMP-DCA輔助偵測,可最有效地增加感測電化學訊號。偵測葡萄糖時,則以BMP-NTf2輔助下,具極佳的感測靈敏度。
藉由EMI-DCA 與BMP-NTf2兩種不同性質之離子液體輔助,同時偵測抗壞血酸與葡萄糖,可成功地有效分離兩者的氧化電位及電流,暗示著可針對不同的待測物質,設計合適的離子液體,研究結果指出離子液體將有潛力取代酵素(enzyme),達到良好靈敏度與選擇性之目的。
摘要(英) In this study, we use graphene as the supporting material. Pd/Graphene nanocomposite is successfully synthesized using a supercritical carbon dioxide (scCO2) deposition technique. Due to good wettability between scCO2 and graphene, the reduced Pd nanparticles are highly dispersed and uniformly loaded on graphene. The scCO2 Pd/Graphene nanocomposite shows a superior sensing performance in non-enzymatic biosensor applications. 
    We have constructed Pd nanoparticles on graphene and multi-walled carbon nanotubes (MWCNTs) substrates with the aid of scCO2. Without incorporating ionic liquid (IL), the electrochemical sensitivity of the Pd/Graphene is less than that of the Pd/MWCNTs. With IL incorporation, the sensing signals of both the composites can be significantly increased. IL plays a role of improving electron transfer kinetics and enhances electrocatalytic activity to ascorbic acid (AA), dopamine (DA), and uric acid (UA) oxidation. The Pd/Graphene/IL shows a higher current response and a wider peak potential separation as compared to those of the Pd/MWCNTs/IL. This result shows that the Pd/Graphene/IL is quite promising for biosensor applications.
    We have mixed Pd/Graphene with different ILs. Five different ILs are used in this study, including 1-butyl-3-methylimidazolium hexafluorophosphate (BMI-PF6), 1-butyl-1-methylpyrrolidinium bis((trifluoromethyl)sulfonyl)imide (BMP-NTf2), 1-butyl-1-methylpyrrolidinium dicyanamide (BMP-DCA), 1-ethyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)imide (EMI-NTf2), and 1-ethyl-3-methylimidazolium dicyanamide (EMI-DCA). We have systematically evaluated the performance of ILs for optimizing the electrochemical biosensing performances. Among the ILs studied, EMI-DCA can most effectively improve the electrochemical sensitivity of the Pd/Graphene nanocomposite towards AA, DA and UA; while the BMP-NTf2 is more suitable for glucose detection. 
For simultaneous detection of AA and glucose, satisfactory selectivity of the composite electrode can be achieved by incorporating appropriate ILs. The research findings show that ILs could be potential substitutes for enzymes in electrochemical biosensor applications.
關鍵字(中) ★ 石墨烯
★ 離子液體
★ 電化學生化感測器
★ 鈀奈米粒子
★ 超臨界流體
關鍵字(英) ★ supercritical fluid
★ palladium nanoparticles
★ graphene
★ ionic liquid
★ electrochemical biosensor
論文目次 摘要......................................................i
Abstract................................................iii
誌謝......................................................v
總目錄...................................................vi
表目錄...................................................ix
圖目錄....................................................x
一、前言..................................................1
二、研究背景與文獻回顧....................................5
2-1 生化感測器...........................................5
2-2 電化學生化感測器.....................................6
2-3 感測物質簡介.........................................8
2-4 感測電極材料........................................11
2-5 超臨界二氧化碳簡介..................................12
2-6 石墨烯簡介..........................................15
2-7 離子液體簡介........................................17
三、實驗方法與步驟 .......................................33
3-1 製備鈀/石墨烯複合材料...............................33
3-2 鈀/石墨烯複合材料之特性鑑定.........................34
3-2-1 鈀奈米粒子負載量之分析............................34
3-2-2 複合材料料結晶結構之鑑定..........................34
3-2-3 微結構之分析......................................34
3-3 電化學感測實驗流程..................................34
3-3-1 漿料與感測電極之製備..............................34
3-3-2 離子液體做為連結..................................35
3-3-3 電化學生化感測....................................35
四、結果與討論...........................................41
4-1 鈀/石墨烯複合材料之分析.............................41
4-1-1 熱重分析法........................................41
4-1-2 粉末X光繞射分析...................................41
4-1-3 穿透式電子顯微鏡之分析............................42
4-2 超臨界二氧化碳製備之複合材料電化學性質..............43
4-3 鈀/石墨烯與鈀/多壁奈米碳管複合材料電化學感測特性之比較.......................................................45
4-4 離子液體輔助鈀/石墨烯複合材料之比較.................47
五、結論.................................................71
六、未來研究工作.........................................73
參考文獻.................................................74
參考文獻 [1] R. Thusu, Analytical Review of World Biosensors Market, Frost & Sullivan, 2010.
[2] D. R. Thevenot, R. A. Durst, G. S. Wilson, Pure Appl. Chem., 71 (1999) 2333.
[3] C. I. L. Justino, T. A. R. Santos, A. C. Durte, TrAC Trends Anal. Chem., 29 (2010) 1172.
[4] X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, Y. Sun, Anal. Chim. Acta, 620 (2008) 8.
[5] X. Jiang, D. Li, X. Xu, Y. Ying, Y. Li, Z. Ye, J. Wang, Biosens. Bioelectron., 23 (2008) 1577.
[6] N. J. Ronkainen, H. B. Halsall, W. R. Heineman, Chem. Soc. Rev., 39 (2010) 1747.
[7] D. R. Thevenot, K. Toth, R. A. Durst, G. S. Wilson, Biosens. Bioelectron., 16 (2001) 121.
[8] Y. S. Chen, J. H. Huang, Biosens. Bioelectron., 26 (2010) 207.
[9] F. W. Scheller, U. Wollenberger, A. Warsinke, F. Lisdat, Curr. Opin. Biotechnol., 12 (2001) 35.
[10] C. Cai, J. Chen, Anal. Biochem., 332 (2004) 75.
[11] Y. Liu, H. Teng, H. Hou, T. You, Biosens. Bioelectron., 24 (2009) 3329.
[12] A. J. Bard, L. R. Faulkner, Electrochemical Methods, Fundamentals and Applications, 2nd ed., Wiley, New York, 2001.
[13] K. E. Toghill, R. G. Compton, Int. J. Electrochem. Sci., 5 (2010) 1246.
[14] H. Zhu, X. Lu, M. Li, Y. Shao, Z. Zhu, Talanta, 79 (2009) 1446.
[15] A. Safavi, N. Maleki, E. Farjami, Biosens. Bioelectron., 24 (2009) 1655.
[16] C. Zhao, C. Shao, M. Li, K. Jiao, Talanta, 71 (2007) 1769.
[17] R. Zhang, G. D. Jin, D. Chen, X. Y. Hu, Sens. Actuators B, 138 (2009) 174.
[18] M. J. LaVoie, T. G. Hastings, J. Neurosci., 19 (1999) 1484.
[19] W. Sun, M. Yang, K. Jiao, Anal. Bioanal. Chem., 389 (2007) 1283.
[20] J. Wu, J. Suls, W. Sansen, Electrochem. Commun., 2 (2000) 90.
[21] G. Wang, J. Meng, H. Liu, S. Jiao, W. Zhang, D. Chen, B. Fang, Electrochim. Acta, 53 (2008) 2837.
[22] X. Kang, Z. Mai, X. Zou, P. Cai, J. Mo, Anal. Biochem., 363 (2007) 143.
[23] L. Lu, L. Zhang, F. Qu, H. Lu, X. Zhang, Z. Wu, S. Huan, Q. Wang, G. Shen, R. Yu, Biosens. Bioelectron., 25 (2009) 218.
[24] X. Chen, Z. Lina, D. Chen, T. Jia, Z. Cai, X. Wang, X. Chen, G. Chen, M. Oyama, Biosens. Bioelectron., 25 (2010) 1803.
[25] L. Meng, J. Jin, G. Yang, T. Lu, H. Zhang, C. Cai, Anal. Chem., 81 (2009) 7271.
[26] S. M. A. Shibli, K. S. Beenakumari, N. D. Suma, Biosens. Bioelectron., 22 (2006) 633.
[27] H. Heli, M. Hajjizadeh, A. Jabbari, A. A. M. Movahedi, Biosens. Bioelectron., 24 (2009) 2328.
[28] S. Thiagarajan, S. M. Chen, Talanta, 74 (2007) 212.
[29] J. Huang, Y. Liu, H. Hou, T. You, Biosens. Bioelectron., 24 (2008) 632.
[30] L. M. Lu, H. B. Li, F. Qu, X. B. Zhang, G. L. Shen, R. Q. Yu, Biosens. Bioelectron., 26 (2011) 3500.
[31] M. Zhou, Y. Zhai, S. Dong, Anal. Chem., 81 (2009) 5603.
[32] F. Zhao, X. Wu, M. Wang, Y. Liu, L. Gao, S. Dong, Anal. Chem., 76 (2004) 4960.
[33] Y. Zhao, Y. Gao, D. Zhan, H. Liu, Q. Zhao, Y. Kou, Y. Shao, M. Li, Q. Zhuang, Z. Zhu, Talanta, 66 (2005) 51.
[34] M. V. Palmer, S. S. T. Ting, Food Chem., 52 (1995) 345.
[35] W. Leitner, Acc. Chem. Res., 35 (2002) 746.
[36] J. M. DeSimone, Science, 297 (2002) 799.
[37] K. P. Johnston, P. S. Shah, Science, 303 (2004) 482.
[38] Y. Du, F. Cai, D. L. Kong, L. N. He, Green Chem., 7 (2005) 518.
[39] H. Peker, M. P. Srinivasan, J. M. Smith, B. J. McCoy, AlChE J., 38 (1992) 761.
[40] G. L. Weibel, C. K. Ober, Microelectron. Eng., 65 (2003) 145.
[41] X. R. Ye, Y. Lin, C. M. Wai, Chem. Commun., (2003) 642.
[42] A. Bayrakceken, A. Smirnova, U. Kitkamthorn, M. Aindow, L. Turker, I. Eroglu, C. Erkey, J. Power Sources, 179 (2008) 532.
[43] J. A. Darr, M. Poliakoff, Chem. Rev., 99 (1999) 495.
[44] S. Marre, F. Cansell, C. Aymonier, Nanotechnology, 17 (2006) 4594.
[45] X. R. Ye, Y. Lin, C. M. Wai, Chem. Commun., (2003) 642.
[46] X. R. Ye, Y. Lin, C. Wang, M. H. Engelhard, Y. Wanga, C. M. Wai, J. Mater. Chem., 14 (2004) 908.
[47] X. R. Ye, Y. Lin, C.Wang, C. M. Wai, Adv. Mater., 15 (2003) 316.
[48] B. Cangül, L. C. Zhang, M. Aindow, C. Erkey, J. Supercrit. Fluids, 50 (2009) 82.
[49] Z. Y. Sun, Z. M. Liu, B. X. Han, S. D. Miao, Z. J. Miao, G. M. An, J. Colloid Interface Sci., 304 (2006) 323.
[50] Y. Lin, X. Cui, X. Ye, Electrochem. Commun., 7 (2005) 267.
[51] X. Liu, W. Liu, J. Li, Y. Zhang, L. Lang, L. Ma, B. Zhang, Ind. Eng. Chem. Res., 49 (2010) 8826.
[52] A. K. Geim, K. S. Novoselov, Nat. Mater., 6 (2007) 183.
[53] Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, Y. Lin, Electroanalysis, 22 (2010) 1027.
[54] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science, 306 (2004) 666.
[55] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, A. K. Geim, Proc. Natl. Acad. Sci. USA, 102 (2005) 10451.
[56] J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, S. Roth, Nature, 446 (2007) 60.
[57] S. Alwarappan, A. Erdem, C. Liu, C. Z. Li, J. Phys. Chem. C, 113 (2009) 8853.
[58] J. H. Chen, C. Jang, S. Xiao, M. Ishigami, M. S. Fuhrer, Nat. Nano., 3 (2008) 206.
[59] T. Durkop, S. A. Getty, E. Cobas, M. S. Fuhrer, Nano Lett., 4 (2004) 35.
[60] M. D. Stoller, S. Park, Y. Zhu, J. An, R. S. Ruoff, Nano Lett., 8 (2008) 3498.
[61] W. Yang, K. R. Ratinac, S. P. Ringer, P. Thordarson, J. J. Gooding, F. Braet, Angew. Chem. Int. Ed., 49 (2010) 2114.
[62] Y. Wang, Y. Li, L. Tang, J. Lu, J. Li, Electrochem. Commun., 11 (2009) 889.
[63] J. S. Wilkes, Green Chem., 4 (2002) 73.
[64] P. T. Anastas, J. B. Zimmerman, Environ. Sci. Technol., 37 (2003) 94A.
[65] F. Endres, S. Z. E. Abedin, Phys. Chem. Chem. Phys., 8 (2006) 2101.
[66] M. J. A. Shiddiky, A. A. J. Torriero, Biosen. Bioelectron., 26 (2011) 1775.
[67] T. Fukushima, A. Kosaka, Y. Ishimura, T. Yamamoto, T. Takigawa, N. Ishii, T. Aida, Science, 300 (2003) 2074.
[68] T. Fukushima, T. Aida, Chem. Eur. J., 13 (2007) 5048.
[69] N. Maleki, A. Safavi, F. Tajabadi, Anal. Chem., 78 (2006) 3820.
[70] J. Dong, Y. Hu, S. Zhu, J. Xu, Y. Xu, Anal. Bioanal. Chem., 396 (2010) 1755.
[71] W. Sun, M. Yang, R. Gao, K. Jiao, Electroanalysis, 19 (2007) 1597.
[72] N. Maleki, A. Safavi, F. Tajabadi, Electroanalysis, 19 (2007) 2247.
[73] A. Safavi, N. Maleki, F. Tajabadi, E. Farjami, Electrochem. Commun., 9 (2007) 1963.
[74] Y. Zhao, H. Liu, Y. Kou, M. Li, Z. Zhu, Q. Zhuang, Electrochem. Commun., 9 (2007) 2457.
[75] Q. Yan, F. Zhao, G. Li, B. Zeng, Electroanalysis, 18 (2006) 1075.
[76] F. Xiao, F. Zhao, D. Mei, Z. Mo, B. Zeng, Biosens. Bioelectron., 24 (2009) 3481.
[77] F. Zhao, F. Xiao, B. Zeng, Electrochem. Commun., 12 (2010) 168.
[78] S. V. Dzyuba, R. A. Bartsch, ChemPhysChem, 3 (2002) 161.
[79] D. R. MacFarlane, P. Meakin, J. Sun, N. Amini, M. Forsyth, J. Phys. Chem. B, 103 (1999) 4164.
[80] D. R. MacFarlane, J. Golding, S. Forsyth, M. Forsyth, G. B. Deacon, Chem. Commun., (2001) 1430.
[81] S. Carda-Broch, A. Berthod, A. W. Armstrong, Anal. Bioanal. Chem., 375 (2003) 191.
[82] Y. Yoshida, O. Baba, G. Saito, J. Phys. Chem. B, 111 (2007) 4742.
[83] A. Y. Cao, C. L. Xu, J. Liang, D. Wu, B. Wei, Chem. Phys. Lett., 344 (2001) 13.
[84] S. W. Kim, J. Park, Y. Jan, Y. Chung, S. Hwang, T. Hyeon, Nano Lett., 3 (2003) 1289.
[85] Z. Sun, Z. Liu, B. Han, S. Miao, Z. Miao, G. An, J. Colloid Interface Sci., 304 (2006) 323.
[86] B. Partoens, F. M. Peeters, Phys. Rev. B, 74 (2006) 075404.
[87] S. Horiuchi, T. Gotou, M. Fujiwara, T. Asaka, T. Yokosawa, Y. Matsui, Appl. Phys. Lett., 84 (2004) 2403.
[88] J. M. Blackburn, D. P. Long, J. J. Watkins, Chem. Mater., 12 (2000) 2625.
[89] P. Chen, X. Wu, J. Lin, K. L. Tan, J. Phys. Chem. B, 103 (1999) 4559.
[90] B. Xue, P. Chen, Q. Hong, J. Y. Lin, K. L. Tan, J. Mat. Chem., 11 (2001) 2378.
[91] T. You, O. Niwa, Z. Chen, K. Hayashi, M. Tomita, S. Hirono, Anal. Chem., 75 (2003) 5191.
[92] A. Safavi, N. Maleki, O. Moradlou, F. Tajabadi, Anal. Biochem., 359 (2006) 224.
[93] M. N. Friedemann, S. W. Robinson, G. A. Gerhardt, Anal. Chem., 68 (1996) 2621.
指導教授 張仍奎(Jeng-Kuei Chang) 審核日期 2011-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明