博碩士論文 983209011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:42 、訪客IP:3.141.29.90
姓名 王秋眉(Chiou-mei Wang)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 離子佈植對鎳合金矽化物之影響
(Effects of Ion Implantation on Nickel Alloy Silicides)
相關論文
★ 鋅空氣電池之電解質開發★ 添加石墨烯助導劑對活性碳超高電容電極性質的影響
★ 耐高壓離子液體電解質★ 熱裂解法製備RuO2-Ta2O5/Ti電極 應用於離子液體電解液
★ 碳系超級電容器用耐高壓電解液研發★ 離子液體與碸類溶劑混合型電解液應用於鋰離子電池矽負極材料
★ 三元素摻雜LLTO混LLZO應用鋰離子電池★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
★ 以二氧化釩奈米粒子調變矽化鎂熱電材料之性能★ 可充電式鋁電池的 4-ethylpyridine–AlCl3電解液、規則中孔碳正極材料以及自放電特性研究
★ 釹摻雜鑭鍶鈷鐵奈米纖維應用於質子傳輸型陶瓷電化學電池空氣電極★ 於丁二腈電解質添加碳酸乙烯酯對鋰離子電池性能之影響
★ 多孔鎳集電層應用於三維微型固態超級電容器★ 二氧化錳/銀修飾奈米碳纖維應用於超級電容器
★ 氧化鎳-鑭鍶鈷鐵奈米纖維陰極電極應用於質子傳導型固態氧化物電化學電池★ 應用丁二腈基離子導體修飾PVDF-HFP 複合聚合物電解質與鋰電極界面之高穩定鋰離子電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 此論文研究主題主要是針對離子佈植對於鎳合金矽化物之影響,其中,因也許多文獻提到含鉑的鎳合金矽化物形成於矽基板上可以改善熱穩定性的特點,因此,在本研究當中的兩個子題皆以此為對照組。在第一個子題,首先先針對含鈦的鎳合金矽化物形成於預離子佈植之矽基板(PAI-Si)上之生成反應進行研究。從實驗中,發現含鈦的鎳合金矽化物形成於矽基板上,因為鈦猶如一中間層,會使鎳不容易擴散,而提早二矽化鎳(NiSi2)的生成,且退火溫度越高,根據熱力學定理,則二矽化鎳會變為一平整面,藉此改善其電性。此外,含鈦的鎳合金矽化物形成於預離子佈植之矽基板上,可發現經由低溫退火後也會有二矽化鎳相,其原因為預離子佈植之基板,表面會變為非晶質,而降低二矽化鎳成核所需的能量,另一方面,非晶質的矽也會讓鎳的擴散變快,因此,具有低電阻的矽化鎳(NiSi)生成,但再經由更高溫的退火,金屬鎳反應完之後,則二矽化鎳又開始生成,但因其非晶質矽與結晶矽之介面含有離子佈植的氙,而影響二矽化鎳的成長,因此其介面較為不平整,因此使用添加鈦的鎳合金在預離子佈植的矽基板上形成鎳合金矽化物,不僅使低電阻的矽化鎳的製程溫度變大,也可以進一步改善蕭基能障高度。
在第二個子題部分,在鎳-鐿矽化物形成於矽基板之探討的部分。從結果得知,利用鐿的添加,不僅可以生成含有低功函數的鎳-鐿矽化物,也進一步改善因為在鉑-矽系統中,NiSi薄膜經由高溫退火之後會變為島嶼狀的熱穩定性之缺點,而提升元件的可靠性。另一方面,利用碳的離子佈植製程,而在矽化過程中,因為碳不溶於矽化物,而在矽化物與矽基板之間的累積,以改善薄膜的熱穩定性,因此若能善加利用含鐿的鎳矽化物及碳離子佈植兩者所擁有的優點,定能有效改善矽化物在元件中的可靠度。
摘要(英) The research topics that effect of ion implantation on nickel alloy silicide. Reportedly, the thermal stability of Ni silicides was improved by the introduction of Pt atom. For comparison, the Ni-Pt /Si samples were also prepared at the same conditions. Frist, one of this study investigates the formation of Ni-Ti silicide on preamorphization implanted Si ( PAI-Si). The system of Ni-Ti silicide formed on the Si substrate, the NiSi2 was the only silicide phase. This study proposes a mechanism that Ti-just interface, effectively hindering the Ni atom diffuse into Si substrate. Furthermore, according to the theorems of thermodynamics, a flat (100) interface was formed at high temperature. In addition, the Ni-Ti silicide formed on PAI-Si substrate, the NiSi2 was formed at low temperature. The NiSi2 phase formed completely through the amorphous silicon and stopped at the crystalline substrate. It did not penetrate further due to the absence of a driving force, which, in the case of reaction with amorphous silicon, is provided by an excess free. However, the rough interfaces of amorphous silicon and crystalline silicon with ion implantation of Xe, which will affect the growth of nickel disilicide. For the Ni-Ti silicide formed on PAI-Si substrate, not only larger the low-resistance nickel silicide process temperature but also improving the Schottky barrier height.
On the other hand, the formation of Ni-Yb alloy silicides on Si substrate has been systematically investigated in this study. The presence of Yb atoms can form with a low work function of Ni-Yb silicides and suppress the agglomeration of silicide films at high temperature. In addition, the process of carbon ion implantation in the Ni-Yb alloy films, the carbon is not soluble in the silicide. It is likely that carbon segregates to the silicide/ Si interfaces to improve the thermal stability of the film. If we can combine the process of Ni-Yb alloy silicides and carbon ion implantation we will be able to effectively improve the silicide in the component reliability.
關鍵字(中) ★ 離子佈植
★ 鈦
★ 鐿
★ 鎳合金矽化物
關鍵字(英) ★ Ion implantation
★ Titanium
★ Ytterbium
★ Ni-alloy silicide
論文目次 Abstrate I
摘要 III
誌謝 IV
目錄 V
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1.1簡介 1
1.2自我校準矽化製程 2
1.3金屬矽化物之性質 4
1.3.1鈦矽化物(Titanium Silicide) 8
1.3.2 鈷矽化物(Cobalt Silicide) 9
1.3.3 鎳矽化物(Nickel Silicide) 10
1.4 合金元素對鎳矽化物之影響 13
1.5 離子佈植對矽化物之影響 15
1.5.1預離子佈植(Pre-implant)的基板 15
1.5.2 離子佈植穿過金屬層(Implant through metal,ITM) 18
參考文獻 20
第二章 分析方法簡介 25
2.1四點探針量測分析儀 25
2.2 X光繞射儀 26
2.3穿透式電子顯微鏡 27
2.4拉曼光譜 28
2.4 X光電子能譜儀 31
第三章 鎳鈦矽化物形成於預離子佈植矽(100)基板矽化之探討 32
3.1 研究動機 32
3.2 試片準備 34
3.3 結果與討論 35
3.4結論 46
參考文獻 50
第四章 碳離子佈植的鎳鐿矽化物形成於矽(100)基板之探討 53
4.1 研究動機 53
4.2 試片準備 55
4.3 結果與討論 56
4.4結論 64
參考文獻 65
第五章 結論 68
5.1鎳鈦矽化物形成於預離子佈植矽(100)基板之探討 68
5.2碳離子佈植的鎳鐿矽化物形成於矽(100)基板之探討 68
參考文獻 1.1. S. L. Zhang, “Self-aligned silicides for ohmic contacts in complementary metal–oxide–semiconductor technology: TiSi2, CoSi2, and NiSi”, J. Vac. Sci. Technol. A, 22, 1361 (2004). 
1.2. S. P. Murarka, “Silicide thin film and their applications in microelectronics”, Intermetallics, 3, 173 (1995).
1.3. H. Iwa, T. Ohguro, and S.I. Ohmi, “NiSi salicide technology for scaled CMOS”,  Microelectronic Eng., 60, 157 (2002).
1.4. R. Beyers and R. Sinclair,” Metastable phase formation in titanium‐silicon thin films”, J. Appl. Phys., 57, 5240 (1985).
1.5. A. Lauwers, M. D. Potter, O. Chamirian, R. Lindsay, C. Demeurisse, C. Vrancken, and K. Maex, “Silicides for the 100-nm node and beyond: Co-silicide, Co(Ni)-silicide and Ni-silicide”, Microelectronic Eng., 64, 131 (2002).
1.6. P. Liu, T. C. Hsiao, and J. C. S. Woo, “A low thermal budget self-aligned Ti silicide technology using germanium implantation for thin-film SOI MOSFET’s”, IEEE Trans. Electron Devices, 45, 1280 (1998).
1.7. P. S. Lee, D. Mangelinck, K. L. Pey, and J. Ding, “On the Ni–Si phase transformation with/ without native oxide”, Microelectronic Eng., 51, 583 (2000) 
1.8. J. B. Lasky, J. S. Nakos, D. J. Cain, and P. J. Geiss, “Comparison of transformation to low-resistivity phase and agglomeration of TiSi2 and CoSi2”, IEEE Tran. Electron. Devices, ED-38, 262 (1991).
1.9. T. Ohguro, S. I. Nakamura, and M. Koike, “Analysis of resistance behavior in Ti and Ni-salicided polysilicon films”, IEEE Tran. Electron Devices, 41, 2305 (1994). 
1.10. A. H. V. Ommen, C. W. T. Bulle-Ueuwma, and C. Langereis, “Properties of CoSi2 formed on (001) Si” J. Appl. Phys., 64, 2706 (1988).
1.11. G. J. V. Gurp and C. Langereis, “Cobalt silicide layer on Si. l. structure and growth”, J. Appl. Phys., 46, 4301 (1975).
1.12. S. S. Lau, J. W. Mayer, and K. N. Tu, “Interaction in the Co/Si thin film system. I. kinetics”, J. Appl. Phys., 49, 4005 (1978).
1.13. K. N. Tu, G. Ottaviani, R. D. Thompson, and J. W. Mayer, “Thermal stability and growth kinetics of Co2Si and CoSi in thin-film reaction”, J. Appl. Phys., 53, 4406 (1982) .
1.14. G. J. V. Grup, W. F. V. D. Weg, and D. Sigurd, “Interaction in the Co/Si thin film system. II. diffusion maker experiments”, J. Appl. Phys., 49, 4011 (1978). 
1.15. C. Lavoie, F. M. d’Heurle, C. Detavernier, and C. Cabral Jr., “Towards implementation of a nickel silicide process for CMOS technologies”, Microelectronic Eng., 70, 144 (2003).
1.16. C. C. Wang, H. H. Lin, and M. C. Chen, “Thermal Stability of Cu/NiSi-Contacted p+n Shallow Junction”, J. J. Appl. Physi., 43, 5997 (2004).
1.17. A. Lauwers, J. A. Kittl, M. J. H. V. Dal, O. Chamirian, M. A. Pawlak, M. D. Potter, R. Lindsay, T. Raymakers, X. Pages, B. Mebarki, T. Mandrekar, and K. Maex, “Ni based silicides for 45 nm CMOS and beyond”, Mater. Sci. Eng. B, 114, 29 (2004).
1.18. F. F. Zhao, J. Z. Zheng, Z. X. Shen, T. Osipowicz, W. Z. Ga, and L. H. Chan, “Thermal stability study of NiSi and NiSi2 thin films”, Microelectron. Eng., 71, 104 (2004).
1.19. D. Ma, D. Z. Chi, M. E. Loomans, W. D. Wang, A. S. W. Wong, and S. J. Chua, “Kinetics of NiSi-to-NiSi2 transformation and morphological evolution in nickel silicide thin films on Si(001)”, Acta Mater., 54, 4905 (2006).
1.20. D. Z. Chi, R. T. P. Lee, and S. J. Chua, “Addressing materials and process-integration issues of NiSi silicide process using impurity engineering”, IEEE,113 (2004).
1.21. D. Mangelinck, J. Y. Dai, J. S. Pan, and S. K. Lahiri, “Enhancement of thermal stability of NiSi films on (100)Si and (111)Si by Pt addition” Appl. Phys. Lett., 75, 1736 (1999).
1.22. P. S. Lee, K. L. Pey, D. Mangelinck, J. Ding, D. Z. Chi, and L. Chan, “New salicidation technology with Ni(Pt) alloy for MOSFETs” IEEE Electron Device Lett., 22, 568 (2001).
1.23. J. Demeulemeester, D. Smeets, C. Van Bockstael, C. Detavernier, C. M. Comrie,N. P. Barradas, A. Vieira, and A. Vantomme,” Pt redistribution during Ni(Pt) silicide formation”, Appl. Phys. Lett., 93, 261912 (2008).
1.24. P. S. Lee, K. L. Pey, D. Mangelinck, D. Z. Chi, and T. Osipowicz, “On the morphological changes of Ni- and Ni(Pt)-Silicides”, J Electrochem. Soc., 152, G305 (2005).
1.25. R. Wei and C. Dongzhi, ” Formation mechanism of Ni(Pt,Ti) ternary alloy ailicidation”,  J. Electrochem. Soc., 155, H117 (2008). 
1.26. Y. Setiawan, P. S. Lee, C. W. Tan, and K. L. Pey, “Effect of Ti alloying in nickel silicide formation”, Thin Solid Films, 504, 153 (2006).
1.27. Y. Setiawan, P. S. Lee, C. W. Tan, K. L. Pey, X. C. Wang, and G. C. Lim,” Laser-induced Ni(Ti)silicide formation”, Appl. Phys. Lett.,88, 113108 (2006).
1.28. K. Tsutsui, T. Shiozawa, K. Nagahiro, Y. Ohishi, K. Kakushima, P. Ahmet, N. Urushihara, M. Suzuki, and H. Iwai, “Improvement of thermal stability of Ni silicide on N+–Si by direct deposition of group III element (Al, B) thin film at Ni/Si interface”, Microelectron. Eng., 85, 2000 (2008).
1.29. F. Allenstein, L. Budzinski, D. Hirsch, A. Mogilatenko, G. Beddies, R. Gro¨ tzschel, and H.-J. Hinneberg, “Influence of Al on the growth of NiSi2 on Si(001)”, Microelectron. Eng., 82, 474 (2005).
1.30. J. Luo, Y.-L. Jiang, G.-P. Ru, B.-Z. Li, and P. K. Chu, “Silicidation of Ni(Yb) film on Si(001)”, J. Electron. Mater., 37, 245 (2008).
1.31. L. W. Cheng, S. L. Cheng, and L. J. Chena “Formation of Ni silicides on (001) Si with a thin interposing Pt layer” J. Vac. Sci. Technol. A, 18, 1176 (2000).
1.32. O. Nakatsuka, K. Okubo, Y. Tsuchiya, A. Sakai, S. Zaima, and Y. Yasuda, “Low-temperature formation of epitaxial NiSi2 layers with solid-phase reaction in Ni/Ti/Si(001) systems”, J. J. Appl. Phys.,44, 2945 (2005).
1.33. U. Falke, F. Fenske, S. Schulze, and M. Hietschold, “XTEM studies of Nickel silicide growth on Si(100) using a Ni/Ti bilayer system”, Phys. Stat. Sol. (a), 162, 615 (1997).
1.34. W. Huang, Y. L. Min, G. P. Ru, Y. L. Jiang, X. P. Qu, and B. Z. Li, “Effect of erbium interlayer on nickel silicide formation on Si(100)”, Scr. Mater., 254, 2120 (2008).
1.35. A. S. W. Wong, D. Z. Chi, M. Loomans, D. Ma, M. Y. Lai, W. C. Tjiu, S. J. Chua, C. W. Lim, and J. E. Greene, “F-enhanced morphological and thermal stability of NiSi films on BF2+-implanted Si (001)”, Appl. Phys. Lett.,81, 5138 (2002).
1.36. P. S. Lee, K. L. Pey, D. Mangelinck, J. Ding, A. T. S. Wee, and L. Chan, “Improved NiSi salicide process using presilicide N¬2+ implant for MOSFETs”, IEEE Electron Device Lett., 21, 566 ( 2000).
1.37. W. J. Chen and L. J. Chen, “Thermal stability of NiSi2 on high-dose ion-implanted (001) Si”, J. Appl. Phys., 72, 653 (1991).
1.38. B.-Y. Tsui, C.-M. Hsieh, Y.-R. Hung, Y. Yang, R. Shen, S. Cheng, and T. Lin, “Improvement of the thermal stability of NiSi by Germanium ion implantation”, J. Electrochem. Soc., 157, H137 (2010).
1.39. O. Nakatsuka, K. Okubo, A. Sakai, M. Ogawa, Y. Yasuda, and S. Zaima, ”Improvement in NiSi/Si contact properties with C-implantation”, Microelectronic Eng., 82, 479 (2005).
1.40. Z. Kuwano, J. R. Phillips, and J. W. Mayer, “Resistivity and morphology of TiSi2 formed on Xe +-implanted polycrystalline silicon”, Appl. Phys. Lett., 56, 440 (1990).
1.41. H. O. Bayashi, M. Morimoto, and E. Nagasawa, “Low-resistance MOS technology using self-aligned refractory silicidation”, IEEE Trans. Electron Devices, 31, 1329 (1984).
1.42. M. P. Ma, C. T. Lin, and H. C. Cheng, “ Fabration of Ti and Co silicide shallow junctions using novel techniques”, Solid-State and Integrated Circuit Technology , 24, 662 (1995). 
1.43. M. H. Juang, M. J. Tsai, M. C. Hu, and C. J. Yang, “Formation of NiSi-silicide shallow P+N junctions by BF2+ implantation into thin Ni or NiSi films on Si substrates and subsequent anneal”, Solid-State Electronics, 42, 1953 (1998).
1.44. C. C. Wang , Y. K. Wu, W. H. Wu, and M.C. Chen, “Formation of NiSi-silicided p+n shallow junctions by BF2+ implantation into/through silicide and rapid thermal annealing”, J. J. Appl. Phys., 44,108 (2005).
1.45. C. C. Wang and M. C. Chen, “Formation and Characterization of NiSi-Silicided n+ p Shallow Junctions”, J. J. Appl. Phys., 45, 1582 (2006).
3.1. S. L. Zhang, “Self-aligned silicides for Ohmic contacts in complementary metal–oxide–semiconductor technology: TiSi2, CoSi2, and NiSi” , J. Vac. Sci. Technol. A 22, 1361 (2004). 
3.2. C. C. Wang, H. H. Lin, and M. C. Chen, “Thermal Stability of Cu/NiSi-Contacted p+n Shallow Junction”, J. J. Appl. Phys., 43, 5997 (2004).
3.3. A. Lauwers, J. A. Kittl, M. J. H. V. Dal, O. Chamirian, M. A. Pawlak, M. D Potter, R. Lindsay, T. Raymakers, X. Pages, B. Mebarki, T. Mandrekar, and K. Maex, “Ni based silicides for 45 nm CMOS and beyond”, Mater. Sci. Eng. B, 114, 29 (2004).
3.4. F. F. Zhao, J. Z. Zheng, Z. X. Shen, T. Osipowicz, W. Z. Ga, and L. H. Chan, “Thermal stability study of NiSi and NiSi2 thin films”, Microelectron. Eng., 71, 104 (2004).
3.5. D. Ma, D. Z. Chi, M. E. Loomans, W. D. Wang, A. S. W. Wong, and S. J. Chua, “Kinetics of NiSi-to-NiSi2 transformation and morphological evolution in nickel silicide thin films on Si(001)”, Acta Mater., 54, 4905 (2006).
3.6. D. Z. Chi, R. T. P. Lee, and S. J. Chua, “Addressing materials and process-integration issues of NiSi silicide process using impurity engineering”, IEEE, 113 (2004).
3.7. D. Mangelinck, J. Y. Dai, J. S. Pan, and S. K. Lahiri, “Enhancement of thermal stability of NiSi films on (100)Si and (111)Si by Pt addition” Appl. Phys. Lett., 75, 1736 (1999).
3.8. P. S. Lee, K. L. Pey, D. Mangelinck, J. Ding, D. Z. Chi, and L. Chan, “New salicidation technology with Ni(Pt) alloy for MOSFETs” IEEE Electron Device Lett., 22, 568 (2001).
3.9. J. Demeulemeester, D. Smeets, C. V. Bockstael, C. Detavernier, C. M. Comrie, N. P. Barradas, A. Vieira, and A. Vantomme,” Pt redistribution during Ni(Pt) silicide formation”, Appl. Phys. Lett., 93, 261912 (2008)
3.10. P. S. Lee, K. L. Pey, D. Mangelinck, D. Z. Chi, and T. Osipowicz, “On the morphological changes of Ni- and Ni(Pt)-Silicides”, J Electrochem. Soc., 152, G305 (2005).
3.11. Y. Setiawan, P. S. Lee, C.W. Tan, and K.L. Pey, “Effect of Ti alloying in nickel silicide formation”, Thin Solid Films, 504, 153 (2006).
3.12. Y. Setiawan, P. S. Lee, C.W. Tan, K.L. Pey, X. C. Wang, and G. C. Lim,” Laser-induced Ni(Ti)silicide formation”, Appl. Phys. Lett.,88, 113108 (2006).
3.13. R. Wei and C. Dongzhi, “Formation mechanism of Ni(Pt,Ti) ternary alloy ailicidation”, J. Electrochem. Soc., 155, H117 (2008) 
3.14. R. T. P. Lee, T. Y. Liow, K. M. Tan, A. E.-J. Lim, H.-S. Wong, P.-C. Lim, Doreen M.Y. Lai, G.-Q. Lo, C.-H. Tung, G. Samudra, D.-Z. Chi, and Y.-C. Yeo, “Novel nickel-alloy silicides for source/drain contact resistance reduction in N-channel multiple-gate transistors with sub-35nm gate length”, IEDMS, (2006).
3.15. S Kal and B Umapathi, “Characterization of thin titanium silicide films prepared by PASET and a conventional process”, Semicond. Sci. Technol., 14, 857 (1999).
3.16. F. Allenstein, L. Budzinski, D. Hirsch, A. Mogilatenko, G. Beddies, R. Gro¨ tzschel, and H. J. Hinneberg, “Influence of Al on the growth of NiSi2 on Si(001)”, Microelectron. Eng., 82, 474 (2005).
3.17. J. Luo, Y. L. Jiang, G. P. Ru, B. Z. Li, and P. K. Chu, “Silicidation of Ni(Yb) film on Si(001)”, J. Electron. Mater., 37, 245 (2008).
3.18. L. J. Chen, S.L. Cheng, S.M. Chang, and H.Y. Huang, “Auto-correlation function analysis of amorphous interlayers in Ti/Si systems”, Materials Science in Semiconductor Processing, 4, 237 (2001).
3.19. W. Lur and L. J. Chen, “Growth kinetics of amorphous interlayer formed by interdiffusion of polycrystalline Ti thin-film and single-crystal silicon”, Appl. Phys. Lett., 54, 1218 (1989).
3.20. B. Y. Tsui, C. M. Hsieh, Y. R. Hung, Y. Yang, R. Shen, S. Cheng, and T. Lin, “Improvement of the thermal stability of NiSi by Germanium ion implantation”, J Electrochem. Soc., 157, H137 (2010).
3.21. S. W. Lu, C. W. Nieh, and L. J. Chen, “Epitaxial growth of NiSi2 on ion-implanted silicon at 250-280 ℃”, Appl. Phys. Lett., 49, 1770 (1986).
3.22. Y. N. Erokhin, F. Hong, S. Pramanick, G. A. Rozgonyi, B. K. Patnaik, and C. W. White, “Spatially confined nickel disilicide formation at 400 ℃ on ion implantation preamorphized silicon”, Appl. Phys. Lett., 63, 3173 (1993).
3.23. U. Falke, F. Fenske, S. Schulze, and M. Hietschold, “XTEM studies of nickel silicide growth on Si(100) using a Ni/Ti bilayer system”, Phys. Stat. sol. (a) 162, 615 (1997).
3.24. J. A. Kittl Q. Z. Hong, M. Rodder, and T. Breedijk, “Novel one-step RTP Ti sailicide process with low sheet resistance 0.06 μm gates and high drive current”, IEDM, 111 (1997).
3.25. C. D. Line, M. A. Nicolet, and S. S. Lau, “Low temperature formation of NiSi2 from evaporated Silicon”, Phys. Stat. Sol. (a) 81, 123 (1984).
3.26. J. Lu, J. Luo, S. L. Zhang, M. Ostling, and L. Hultmana, “On epitaxy of ultrathin Ni1−xPtx silicide films on Si (001)”, Electrochem. Solid-State Lett., 13, H360 (2010).
4.1. D.-X. Xu, S. R. Dasa, C. J. Peters, L. E. Erickson, “Material aspects of nickel silicide for ULSI applications” , Thin Solid Films, 326, 143 (1998).
4.2. C. C. Wang, H. H. Lin, and M. C. Chen, “Thermal Stability of Cu/NiSi-Contacted ptn Shallow Junction”, J. J. Appl. Phys., 43, 5997 (2004).
4.3. A. Lauwers, J. A. Kittl, M. J. H. Van Dal, O. Chamirian, M. A. Pawlak, M. de Potter, R. Lindsay, T. Raymakers, X. Pages, B. Mebarki, T. Mandrekar, and K. Maex, “Ni based silicides for 45 nm CMOS and beyond”, Mater. Sci. Eng. B, 114, 29 (2004).
4.4. F. F. Zhao, J. Z. Zheng, Z. X. Shen, T. Osipowicz, W. Z. Ga, and L. H. Chan, “Thermal stability study of NiSi and NiSi2 thin films”, Microelectron. Eng., 71, 104 (2004).
4.5. D. Ma, D. Z. Chi, M. E. Loomans, W. D. Wang, A. S. W. Wong, and S. J. Chua, “Kinetics of NiSi-to-NiSi2 transformation and morphological evolution in nickel silicide thin films on Si(001)”, Acta Mater., 54, 4905 (2006).
4.6. D. Z. Chi, R. T. P. Lee, and S. J. Chua, “Addressing materials and process-integration issues of NiSi silicide process using impurity engineering”, IEEE, pp. 113-118, 2004.
4.7. D. Mangelinck, J. Y. Dai, J. S. Pan, and S. K. Lahiri, “Enhancement of thermal stability of NiSi films on (100)Si and (111)Si by Pt addition” Appl. Phys. Lett., 75, 1736 (1999).
4.8. P. S. Lee, K. L. Pey, D. Mangelinck, J. Ding, D. Z. Chi, and L. Chan, “New salicidation technology with Ni(Pt) alloy for MOSFETs” IEEE Electron Device Lett., 22, 568 (2001).
4.9. J. Demeulemeester, D. Smeets, C. Van Bockstael, C. Detavernier, C. M. Comrie,N. P. Barradas, A. Vieira, and A. Vantomme,” Pt redistribution during Ni(Pt) silicide formation”, Appl. Phys. Lett., 93, 261912 (2008).
4.10. P. S. Lee, K. L. Pey, D. Mangelinck, D. Z. Chi, and T. Osipowicz, “On the morphological changes of Ni- and Ni(Pt)-Silicides”, J. Electrochem. Soc., 152, G305 (2005).
4.11. R. Wei and C. Dongzhi, ” Formation mechanism of Ni(Pt,Ti) ternary alloy ailicidation”,  J. Electrochem. Soc., 155, H117 (2008) 
4.12. Y. Setiawan, P. S. Lee, C.W. Tan, and K.L. Pey, “Effect of Ti alloying in nickel silicide formation”, Thin Solid Films, 504, 153 (2006).
4.13. Y. Setiawan, P. S. Lee, C.W. Tan, K.L. Pey, X. C. Wang, and G. C. Lim,” Laser-induced Ni(Ti)silicide formation”, Appl. Phys. Lett.,88, 113108 (2006).
4.14. K. Tsutsui, T. Shiozawa, K. Nagahiro, Y. Ohishi, K. Kakushima, P. Ahmet, N. Urushihara, M. Suzuki, and H. Iwai, “Improvement of thermal stability of Ni silicide on N+–Si by direct deposition of group III element (Al, B) thin film at Ni/Si interface”, Microelectron. Eng., 85, 2000 (2008).
4.15. F. Allenstein, L. Budzinski, D. Hirsch, A. Mogilatenko, G. Beddies, R. Gro¨ tzschel, and H. J. Hinneberg, “Influence of Al on the growth of NiSi2 on Si(001)”, Microelectron. Eng., 82, 474 (2005).
4.16. J. Luo, Y.-L. Jiang, G.-P. Ru, B.-Z. Li, and P. K. Chu, “Silicidation of Ni(Yb) film on Si(001)”, J. Electron. Mater., 37, 245 (2008).
4.17. J. Luo, Z.-J. Qiu, D. W. Zhang, P.-E. Hellström, M. Östling, and S.-L. Zhang, “Effects of Carbon on schottky barrier heights of NiSi modified by dopant segregation”, IEEE Electron Device Lett., 30, 608 (2009).
4.18. B.-Y. Tsui and C.-M. Lee, “Thermal stability of nickel silicide and shallow junction electrical characteristics with carbon ion implantation”, J. J. Appl. Phys., 49, 04DA04 (2010).
4.19. R. T. P. Lee, L.-T. Yang, T.-Y. Liow, K.-M. Tan, A. E.-J. Lim, K.-W. Ang, D. M. Y. Lai, K. M.n Hoe, G.-Q. Lo, G. S. Samudra, D. Z. C., and Y.-C. Yeo, “Nickel-silicide: carbon contact technology for N-channel MOSFETs with silicon–carbon source/drain”, IEEE Electron Device Lett., 29, 89 (2008).
4.20. W. Knaepen, J. Demeulemeester, J. Jordan-Sweet, A. Vantomme, C. Detavernier, R. L. V. Meirhaeghe, C. Lavoie, “In situ x-ray diffraction study of Ni–Yb interlayer and alloy systems on Si(100)”, J. Vac. Sci. Technol., A 28, 20 (2010).
指導教授 李勝偉(Sheng-wei Lee) 審核日期 2011-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明