博碩士論文 983403007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:18.117.8.177
姓名 黃健嘉(Jian-jia Huang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 製備鈣鈦礦材料作於質子傳導電解質材料與固態氧化物燃料電池連接板保護層材料特性研究
(Fabrications and Characterizations of Perovskite Materials as Proton-Conducting Electrolyte and Protective Layer for Interconnects of Solid Oxide Fuel Cell)
相關論文
★ 使用實驗計劃法求得印刷電路板微鑽針最佳鑽孔參數★ 滾針軸承保持架用材料之電鍍氫脆研究
★ 強制氧化及熱機處理對鎂合金AZ91D固相回收製程之研究★ 滾針軸承保持架圓角修正之有限元素分析
★ 透過乾式蝕刻製作新型鍺全包覆式閘極電晶體元件★ 窗型球柵陣列構裝翹曲及熱應力分析
★ 冷軋延對ZK60擠製材的拉伸與疲勞性質之影響★ 熱引伸輔助超塑成形製作機翼整流罩之設計及分析
★ 超塑性鋁合金5083用於機翼前緣整流罩之研究★ 輕合金輪圈疲勞測試與分析
★ 滾針軸承保持架之有限元分析★ 鎂合金之晶粒細化與超塑性研究
★ 平板式固態氧化物燃料電池穩態熱應力分析★ 固態氧化物燃料電池連接板電漿鍍膜特性研究
★ 7XXX系鋁合金添加Sc之顯微組織與機械性質研究★ 高延性鎂合金之特性及成形性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 鈣鈦礦結構氧化物具有相當多的性質,尤其是其電子與離子傳導特性,故廣泛應用於固態氧化物燃料電池中。如:質子傳導固態氧化物燃料電池中之陽極與電解質材料、及氧離子傳導固態氧化物燃料電池中之陰極材料,甚至當作保護層材料披覆於金屬連接板表面上。本論文則主要討論La0.67Sr0.33MnO3(LSMO)鈣鈦礦氧化物當作保護層材料批覆於金屬連接板表面上、與SrCeO3質子傳導電解質材料。
在La0.67Sr0.33MnO3保護層研究方面,首先分別選擇Crofer22 APU, Crofer H, ss441 及兩個不同成分之ZMG232 之Fe-Cr合金。主要探討這五種材料於800℃高溫環境下之高溫抗氧化性與鉻揮性等。利用SEM/EDS與XRD來觀察及分析材料微結構變化與氧化層成分分析。高溫電阻則利用四點探針法進行量測。結果顯示,Crofer22 APU材料相較於其他四種材料,在長時間高溫環境下呈現出較薄氧化層厚度、較低的高溫電阻與較少的鉻揮發。
為了進一步提升連接板高溫抗氧化性,利用脈衝直流磁控濺射法、氣膠沉積法和網版印刷法、將La0.67Sr0.33MnO3(LSMO)塗覆於連接板表面上當作保護層。並於高溫氧化的環境下分析其高溫電阻變化及鉻揮發。實驗結果顯示,脈衝直流磁控濺射製程可製備出高品質與高緻密性保護層,能有效降低連接板之高溫電阻及減緩鉻向外揮發。
在質子傳導電解質材料方面,選擇SrCeO3當作基本材料,將鉀與釔分別摻雜於SrCeO3材料A-與B-site中 ,利用固態反應法製備出Sr1-xKxCe0.95Y0.05O3, (x=0, 0.025, 0.05)材料。並探討鉀的摻雜對於SrCe0.95Y0.05O3材料於氫氣與二氧化碳氣氛下、對於導電率及化學穩定性的影響。以X光粉末繞射儀(XRD)分析材料相與結構的變化,場發掃描式電子顯微鏡(FE-SEM)觀察材料表面形貌;利用兩點式電阻量測法分別在550, 600, 700, 800 及900℃濕氫氣(RH 30%)氣氛下進行電導率測試;化學穩定性則在600℃、1 atm二氧化碳氣氛下,分別進行2、4、8與16小時穩定性測試。結果顯示,鉀跟釔的摻雜能增加SrCeO3材料的導電率。Sr0.95K0.05Ce0.95Y0.05O3於900℃濕氫氣氣氛導電率可達到0.0081 S/cm2。在化學穩定性方面,鉀跟釔的摻雜無助於SrCeO3材料之化學穩定性,此現象也限制Sr1-xKxCe0.95Y0.05O3材料在固態氧化物燃料電池上的應用。
摘要(英) Perovskite oxides exhibit wide range of electrical and ionic conductivities. They are extensively used as main materials in various components of the solid oxide fuel cells (SOFCs). For example, proton-conducting SOFCs (P-SOFCs) often choose perovskites as anode and electrolyte. On the other hand, in oxygen-conducting SOFCs (O-SOFCs), perovskites are used as cathode and protective layer for interconnects. This thesis presents studies about perovskites for the protection of La0.67Sr0.33MnO3 interconnects in O-SOFCs, and SrCeO3-based proton-conducting electrolyte in P-SOFCs.
For the part of La0.67Sr0.33MnO3 protective layer, five Fe-Cr interconnects, Crofer22 APU, Crofer H, ss441 and two different ZMG232 were selected for high temperature and long term oxidation tests. Our major focus is on these naked materials’ resistance to oxidation and Cr evaporation. The microstructures, morphologies and compositions of samples after oxidation are analyzed by SEM, XRD, EDS on surfaces and cross-sections. Electrical resistance of samples during oxidation is measured by four-point probe to obtain their variations over time. Experimental results revealed that Crofer22 APU has a better performance than others after long-hour oxidation with thinner oxidized layer, lower electrical resistance and less Cr evaporation.
After the oxidation study of naked Fe-Cr interconnects, La0.67Sr0.33MnO3 was coated on interconnects by pulsed-DC magnetron sputtering, aerosol deposition and screen printing respectively. The effects of coating processes and oxidation tests on these coated interconnects were carried out and systematically investigated. The experimental results indicate that the pulsed-DC magnetron sputtering yields much denser La0.67Sr0.33MnO3 protective layer on the interconnects, which leads to lower electrical resistance and Cr evaporation.
For the part of SrCeO3-based electrolyte. SrCeO3 was selected as base-material for their well-known proton-conducting capacity. We studied two different doping elements, i.e. the potassium and yttrium for their influence on the overall electrical/proton conductivities and chemical stability under various atmospheres (H2 and CO2). The potassium is a substitution for Sr (A-site substitute) while the yttrium is for Ce (B-site substitute). The doping content is well controlled and by solid state reaction to give the final products as Sr1-xKxCe0.95Y0.05O3 (x=0, 0.025, 0.05). Results show that conductivity of these new perovskites in moisture H2 atmosphere (RH 30%) can be enhanced with the increasing potassium concentration. The maximum conductivity of Sr0.95K0.05Ce0.95Y0.05O3 was found to attain 0.0081 Scm-1 at 900℃ in moisture H2 atmosphere (RH 30%). Overall speaking, the potassium- and yttrium- doped SrCeO3 possess higher conductivity but retain relatively not good CO2 resistance. Both issues are vital in solid oxide fuel cell applications.
關鍵字(中) ★ 鈣鈦礦
★ 固態氧化物燃料電池
★ 金屬連接板
★ 保護層
★ 質子傳導
關鍵字(英) ★ perovskite
★ SOFC
★ metallic interconnects
★ protective layer
★ proton conducting
論文目次 Abstract III
Chapter 1 Introduction 1
1-1 Structure and properties of perovskite oxides 1
1-2 Perovskite oxide as protective layer in metallic interconnects 3
1-3 Perovskite oxides as proton-conducting electrolyte 4
1-3-1 Proton transport mechanism 5
1-3-2 Reactions for proton transport 6
1-4 Perovskite oxides as anode and cathode of SOFC 8
1-5 Scope, objective and outline of thesis 8
Chapter 2 :Experimental assessments on the resistance to oxidation and Cr evaporation of several Fe-Cr based alloys 11
2-1 Introduction 11
2-2 Experimental 12
2-2-1Material preparation 12
2-2-2Structure and composition analysis for oxidized sample 13
2-2-3Electrical Resistance Measure for Oxidized Sample 13
2-2-4Thermogravimetric Analysis 14
2-2-5 Cr Evaporation Test 14
2-3 Results and discussion 14
2-3-1 Structure and Phase Identification 14
2-3-2 Surface Morphology of Oxidized Layer 15
2-3-3 Cross-Section SEM/EDS of the Oxidized Layer 18
2-3-4 Area Specific Resistance (ASR) 22
2-3-5 Thermogravimetric analysis 23
2-3-6 Cr Evaporation 25
2-4 Conclusions 26
Chapter 3 :Evaluation of protective La0.67Sr0.33MnO3– coatings on various stainless steels used for solid oxide fuel cell interconnects 30
3-1 Introduction 30
3-2 Experimental 32
3-2-1 Material preparation 32
3-2-2 pulsed-DC magnetron sputtering 32
3-2-3 Structure and electrical analysis 33
3-3 Results and dicussion 34
3-3-1 XRD analysis for LSMO protective layer 34
3-3-2 Microstructures of the oxidized surfaces and the formed phases 35
3-3-3 Microstructures at interfaces between oxidized layer and alloy 37
3-3-4 Area specific resistances (ASR) of the LSMO-coated alloys. 39
3-4 Conclusions 41
Chapter 4 :Characterization of Fe–Cr alloy metallic interconnects coated with LSMO using the aerosol deposition process 43
4-1 Introduction 43
4-2 Experimental 44
4-2-1 Materials preparation 44
4-2-2 Aerosol deposition method (AD) 45
4-2-3 Screen printing method (SP) 46
4-2-4 Structure and composition analysis of protective layer coated interconnects undergoing high temperature oxidation 46
4-2-5 Area specific resistance of oxidized samples 47
4-3 Results and discussion 47
4-3-1 XRD analysis of LSMO powder and LSMO-coated Fe–Cr alloys prepared by AD 47
4-3-2 Cross-sectional images of LSMO-coated ss441 during high temperature oxidation 48
4-3-3 Area specific resistance (ASR) 50
4-3-4 EMPA analysis of LSMO-coated ss441 samples 52
4-4 Conclusions 54
Chapter 5 :Effect of potassium substituted for A-site of SrCe0.95Y0.05O3 on microstructure, conductivity and chemical stability 56
5-1 Introduction 56
5-2 Experimental 57
5-2-1 Sample Preparation 57
5-2-2 Materials Characterization 58
5-3 Results and discussion 59
5-3-1 XRD analysis for Sr1-xKxCe0.95Y0.05O3 powders and sintered specimens 59
5-3-2 Chemical stability of Sr1-xKxCe0.95Y0.05O3 specimens in CO2 atmosphere 62
5-3-3 Morphology and fracture images of Sr1-xKxCe0.95Y0.05O3 sintered specimens 64
5-4 Conclusions 70
Chapter 6 : Summary 73
Appendix A: List of Notation 74





List of Figures

Figure 1.1 Schematic diagram of perovskite structure [2]. 1
Figure 1.2 The effect of ionic size of A- and B-cations on the observed distortions of the II-IV and III-III perovskite structure [2]. 2
Figure 1.3 Schematic diagram of the oxygen-conducting SOFC stack cell. 3
Figure 1.4 Proton conductivity of some perovskite oxides at = 0.03 atm [2] 5
Figure 1.5 Schematic diagram of Grotthuss mechanism for proton transfer in perovskite [20]. 6
Figure 2.1 Schematic drawing of four-point probe measuring electrical resistance. 13
Figure 2.2 Schematic drawing of design of high dense alumina sandwich plates for Cr evaporation test. 14
Figure 2.3 XRD pattern of five materials oxidized at 800°C after 250 hours. 15
Figure 2.4 SEM of oxidized surfaces at 800°C after 250 hours, (a) Cofer22 APU, (b) Crofer H, (c) ss441, (d) ZMG232-A and (e) ZMG232-B. Numbers 1, 2 and 3 marked the locations of EDS analysis. 17
Figure 2.5 The Mn/Cr ratio at different points and crystal size of five materials 18
Figure 2.6 Cross-sectional SEM of the oxidized layers before oxidation: (a) Crofer22 APU, (c) Crofer H, (e) ss441, (g) ZMG232-A and (i) ZMG232-B, and after oxidation at 800°C for 250 hours: (b) Crofer22 APU, (d) Crofer H, (f) ss441, (h) ZMG232-A and (j) ZMG232-B. 22
Figure 2.7 Area specific resistance of five materials oxidized at 800°C for 250 hours. 23
Figure 2.8 Gains in weight of four materials oxidized at 800°C after 216 hours. (a) is based on measured weights and (b) on percentage (gain/original weight). 25
Figure 2.9 Averaged atomic concentration of Cr deposited on alumina plates by EDS for from the five materials after oxidation at 800°C after 250 hours. The La concentration is from Table 2.1. 26
Figure 3.1 Schematic representation of pulsed-DC magnetron sputtering. 33
Figure 3.2 Schematic drawing of four-point probe measuring electrical resistance. 34
Figure 3.3 X-ray diffraction patterns of the LSMO coatings on the surfaces of the oxidized alloys processed at different temperatures and for different times: (a) 2205DSS, (b) ZMG232, (c) ss430, and (d) ss304. 35
Figure 3.4 SEM micrographs of the LSMO coated alloys: (a)–(d) ss304, (e)–(h) ss430, (i)–(l) ZMG232, and (m)–(p) 2205DSS after aging at 600℃, 700℃, and 800℃ for time periods ranging from 1 hour to 200 hours. 36
Figure 3.5 SEM surface morphologies of LSMO coated (a) 2205DSS; (b) ZMG232; (c) ss430, and (d) ss304 oxidized at 700℃ for 1 hour. 37
Figure 3.6 SEM micrographs of the oxidized layer /alloy interface for (a) 2205DSS, (b) ZMG232, (c) ss430, and (d) ss304 after oxidation at 800℃ for 200 hours. 38
Figure 3.7 Area specific resistance of four coated materials oxidized at 800℃ for 200 hours. 40
Figure 3.8 Arrhenius plots of LSM-coated 2205DSS, ZMG232, ss430, and ss304 during 800℃ oxidation for 200 hours. 40
Figure 4.1 Particles size distribution of LSMO powder made by solid state reaction method. 45
Figure 4.2 Schematic representation of aerosol deposition apparatus. 46
Figure 4.3 Schematic representation of measuring resistance measuring setup. 47
Figure 4.4 XRD patterns of (a) raw LSMO powder and LSMO protective layer prepared by AD process, (b) the (104) plane from 30°to 36° 48
Figure 4.5 Cross-sectional SEM image for bare ss441 annealed at 800°C for 250 hours in air. 49
Figure 4.6 Cross-sectional SEM images for LSMO-coated ss441 prepared by (a) AD process, (b) SP process annealed at 800°C for 750 hours in air. 50
Figure 4.7 Area specific resistance for bare ss441, LSMO-coated ss441 prepared by AD and SP as a function of time at 800°C in air. 52
Figure 4.8 EPMA mapping of LSMO-coated ss441 prepared by (a) aerosol deposition and (b) screen printing annealed at 800°C for 750 hours in air. 54
Figure 5.1 Schematic representation of measuring conductivity setup. 59
Figure 5.2 XRD patterns for (a) Sr1-xKxCe0.95Y0.05O3 powders calcined in air at 1250℃ for 8 hours, (b) (211) peak at 2θ ranged from 28o to 31o 61
Figure 5.3 Lattice parameters of Sr1-xKxCe0.95Y0.05O3 calcined in air at 1250℃ for 8 hours. 61
Figure 5.4 XRD pattern of Sr1-xKxCe0.95Y0.05O3 specimens sintered at 1550℃ for 8 hours. 61
Figure 5.5 XRD patterns of Sr1-xKxCe0.95Y0.05O3 sintered pellets exposed in CO2 atmosphere at 600℃ for (a) 2 hours, (b) 4 hours, (c) 8 hours, and (d) 16 hours. 64
Figure 5.6 SEM morphology images of Sr1-xKxCe0.95Y0.05O3 sintered in air at 1550℃ for 8 hours, (a) X = 0, (b) X = 0.025, (c) X = 0.05. 65
Figure 5.7 The fracture SEM images of Sr1-xKxCe0.95Y0.05O3 sintered in air at1550℃ for 8 hours, (a) X = 0, (b) X = 0.025, (c) X = 0.05. 67
Figure 5.8 (a) Conductivity and (b) activation energy of Sr1-xKxCe0.95Y0.05O3 specimens measured in the temperature range of 550-900℃ under moisture H2 atmosphere (RH30% ). 70



List of Tables

Table 1.1 Typical properties of perovskite oxides [2]. 3
Table 2.1 Chemical composition of five selected materials. 13
Table 2.2 Mn/Cr ratio of oxidized alloys surface by EDS analysis 18
Table 3.1 Chemical composition of four selected materials. 32
Table 3.2 Thermal expansion of various alloys at temperature form 30℃ to 800℃. 36
Table 4.1 Chemical composition of Fe-Cr alloy. 45
Table 5.1 Weights of each oxide powder corresponding to Sr1-xKxCe0.95Y0.05O3 58
Table 5.2 Porosity and water absorption of Sr1-xKxCe0.95Y0.05O3 using Archimedes method. 66
參考文獻 Chapter 1:
[1] T.K. Oh, H. Yoon, E.D. Wachsman, Solid State Ionics, Vol. 180, (2009), pp. 1233-1239.
[2] T. Ishihara, Perovskite Oxide for Solid Oxide Fuel Cells, Springer US, 2009.
[3] J. Kniep, Y.S. Lin, Ind. Eng. Chem. Res., Vol. 49, (2010), pp. 2768-2774.
[4] C.F. Setevich, L.V. Mogni, A. Caneiro, F.D. Prado, Int. J. Hydrogen Energy, Vol. 37, (2012), pp. 14895-14901.
[5] A. Egger, E. Bucher, M. Yang, W. Sitte, Solid State Ionics, Vol. 225, (2012), pp. 55-60.
[6] M. Balaguer, V.B. Vert, L. Navarrete, J.M. Serra, J. Power Sources, Vol. 223, (2013), pp. 214-220.
[7] Y.M. Yin, M.W. Xiong, N.T. Yang, Z. Tong, Y.Q. Guo, Z.F. Ma, E. Sun, J. Yamanis, B.Y. Jing, Int. J. Hydrogen Energy, Vol. 36, (2011), pp. 3989-3996.
[8] R. Sachitanand, M. Sattari, J.-E. Svensson, J. Froitzheim, Int. J. Hydrogen Energy, Vol. 38, (2013), pp. 15328-15334.
[9] Y. Li, J. Wu, C. Johnson, R. Gemmen, X.M. Scott, X. Liu, Int. J. Hydrogen Energy, Vol. 34, (2009), pp. 1489-1496.
[10] H. Kurokawa, K. Kawamura, T. Maruyama, Solid State Ionics, Vol. 168, (2004), pp. 13-21.
[11] M. Han, S. Peng, Z. Wang, Z. Yang, X. Chen, J. Power Sources, Vol. 164, (2007), pp. 278-283.
[12] T. Brylewski, M. Nanko, T. Maruyama, K. Przybylski, Solid State Ionics, Vol. 143, (2001), pp. 131-150.
[13] K. Fujita, K. Ogasawara, Y. Matsuzaki, T. Sakurai, J. Power Sources, Vol. 131, (2004), pp. 261-269.
[14] G.Y. Lau, M.C. Tucker, C.P. Jacobson, S.J. Visco, S.H. Gleixner, L.C. DeJonghe, J. Power Sources, Vol. 195, (2010), pp. 7540-7547.
[15] E. Konysheva, U. Seeling, A. Besmehn, L. Singheiser, K. Hilpert, J Mater Sci, Vol. 42, (2007), pp. 5778-5784.
[16] M. Matsuka, T. Sakai, H. Matsumoto, R.D. Braddock, I.E. Agranovski, T. Ishihara, Mater. Lett., Vol. 64, (2010), pp. 833-835.
[17] X. Ding, J. Gu, D. Gao, G. Chen, Y. Zhang, J. Power Sources, Vol. 195, (2010), pp. 4252-4254.
[18] J.H. Xu, J. Xiang, H. Ding, T.Q. Yu, J.L. Li, Z.G. Li, Y.W. Yang, X.L. Shao, J. Alloys Compd., Vol. 551, (2013), pp. 333-337.
[19] C. Zhang, S. Li, X. Liu, X. Zhao, D. He, H. Qiu, Q. Yu, S. Wang, L. Jiang, Int. J. Hydrogen Energy, Vol. 38, (2013), pp. 12921-12926.
[20] M. Saiful Islam, J. Mater. Chem., Vol. 10, (2000), pp. 1027-1038.
[21] T. Norby, M. Wideroe, R. Glockner, Y. Larring, Dalton Transactions, Vol. (2004), pp. 3012-3018.
[22] X. Wei, Y.S. Lin, Solid State Ionics, Vol. 178, (2008), pp. 1804-1810.
[23] A. Egger, E. Bucher, M. Yang, W. Sitte, Solid State Ionics, Vol. 225, (2012), pp. 55-60.
[24] C. Zhang, Y. Zheng, Y. Lin, R. Ran, Z. Shao, D. Farrusseng, J. Power Sources, Vol. 191, (2009), pp. 225-232.
[25] M. Ghouse, Y. Al Yousef, A. Al Musa, M.F. Al Otaibi, Int. J. Hydrogen Energy, Vol. 35, (2010), pp. 9411-9419.
[26] B. Morel, R. Roberge, S. Savoie, T.W. Napporn, M. Meunier, Applied Catalysis A: General, Vol. 323, (2007), pp. 181-187.
[27] Y. Liu, Y. Guo, R. Ran, Z. Shao, J. Membr. Sci., Vol. 415–416, (2012), pp. 391-398.
[28] X. Zhang, Y.e. Qiu, F. Jin, F. Guo, Y. Song, B. Zhu, J. Power Sources, Vol. 241, (2013), pp. 654-659.

Chapter 2:
References:
[1] E. Konysheva, U. Seeling, A. Besmehn, L. Singheiser, K. Hilpert, J. Mater. Sci., Vol. 42, (2007), pp. 5778-5784.
[2] Z. Yang, G. Xia, P. Singh, J.W. Stevenson, J. Power Sources, Vol. 155, (2006), pp. 246-252.
[3] Y.D. Zhen, S.P. Jiang, S. Zhang, V. Tan, J. Eur. Ceram. Soc., Vol. 26, (2006), pp. 3253-3264.
[4] B.C.H. Steele, A. Heinzel, Nature, Vol. 414, (2001), pp. 345-352.
[5] T. Horita, H. Kishimoto, K. Yamaji, N. Sakai, Y. Xiong, M.E. Brito, H. Yokokawa, J. Power Sources, Vol. 157, (2006), pp. 681-687.
[6] H.S. Seo, G. Jin, J.H. Jun, D.H. Kim, K.Y. Kim, J. Power Sources, Vol. 178, (2008), pp. 1-8.
[7] Z. Yang, K.S. Weil, D.M. Paxton, J.W. Stevenson, J. Electrochem. Soc., Vol. 150, (2003), pp. A1188-A1201.
[8] L. Jian, P. Jian, X. Jianzhong, Q. Xiaoliang, J. Power Sources, Vol. 139, (2005), pp. 182-187.
[9] P. Jian, L. Jian, H. Bing, G. Xie, J. Power Sources, Vol. 158, (2006), pp. 354-360.
[10] S.H. Kim, J.Y. Huh, J.H. Jun, J.H. Jun, J. Favergeon, Curr. Appl. Phys., Vol. 10, (2010), pp. S86-S90.
[11] J. Wu, X. Liu, J. Mater. Sci. Technol., Vol. 26, (2010), pp. 293-305.
[12] Y. Liu, D.Y. Chen, Int. J. Hydrogen Energy, Vol. 34, (2009), pp. 9220-9226.
[13] T. Horita, K. Yamaji, Y. Xiong, H. Kishimoto, N. Sakai, H. Yokokawa, Solid State Ionics, Vol. 175, (2004), pp. 157-163.
[14] T. Horita, H. Kishimoto, K. Yamaji, Y. Xiong, M.E. Brito, H. Yokokawa, Y. Baba, K. Ogasawara, H. Kameda, Y. Matsuzaki, S. Yamashita, N. Yasuda, T. Uehara, Solid State Ionics, Vol. 179, (2008), pp. 2216-2221.
[15] B. Hua, W. Zhang, J. Wu, J. Pu, B. Chi, L. Jian, J. Power Sources, Vol. 195, (2010), pp. 7375-7379.
[16] G.Y. Lau, M.C. Tucker, C.P. Jacobson, S.J. Visco, S.H. Gleixner, L.C. DeJonghe, J. Power Sources, Vol. 195, (2010), pp. 7540-7547.
[17] K. Fujita, K. Ogasawara, Y. Matsuzaki, T. Sakurai, J. Power Sources, Vol. 131, (2004), pp. 261-269.
[18] N. Yasuda, T. Uehara, S. Tanaka, K. Yamamura, ECS Trans., Vol. 35, (2011), pp. 2437-2445.
[19] J. Rufner, P. Gannon, P. White, M. Deibert, S. Teintze, R. Smith, H. Chen, Int. J. Hydrogen Energy, Vol. 33, (2008), pp. 1392-1398.
[20] T. Horita, K. Yamaji, H. Yokokawa, A. Toji, T. Uehara, K. Ogasawara, H. Kameda, Y. Matsuzaki, S. Yamashita, Int. J. Hydrogen Energy, Vol. 33, (2008), pp. 6308-6315.
[21] Z. Yang, G.G. Xia, M.S. Walker, C.M. Wang, J.W. Stevenson, P. Singh, Int. J. Hydrogen Energy, Vol. 32, (2007), pp. 3770-3777.
[22] M. Palcut, L. Mikkelsen, K. Neufeld, M. Chen, R. Knibbe, P.V. Hendriksen, Corros. Sci., Vol. 52, (2010), pp. 3309-3320.
[23] N. Yasuda, T. Uehara, S. Tanaka, K. Yamamura, ECS Trans., Vol. 35, (2011), pp. 2437-2445.
[24] T. Uehara, N. Yasuda, M. Okamoto, Y. Baba, J. Power Sources, Vol. 196, (2011), pp. 7251-7256.
[25] J. Froitzheim, G.H. Meier, L. Niewolak, P.J. Ennis, H. Hattendorf, L. Singheiser, W.J. Quadakkers, J. Power Sources, Vol. 178, (2008), pp. 163-173.
[26] T. Horita, H. Kishimoto, K. Yamaji, Y. Xiong, N. Sakai, M.E. Brito, H. Yokokawa, J. Power Sources, Vol. 176, (2008), pp. 54-61.
[27] H.S. Seo, D.W. Yun, K.Y. Kim, Int. J. Hydrogen Energy, Vol. 38, (2013), pp. 2432-2442.
[28] V. Miguel-Pérez, A. Martínez-Amesti, M.L. Nó, A. Larrañaga, M.I. Arriortua, Corros. Sci., Vol. 60, (2012), pp. 38-49.
[29] T. Malkow, W.J. Quadakkers, L. Singheiser, H. Nickel, Julich, Vol. Jul-3589, (1998), pp.
[30] W.Z. Zhu, S.C. Deevi, Mater. Res. Bull., Vol. 38, (2003), pp. 957-972.
[31] S. Klemme, H.S.C. O′Neill, W. Schnelle, E. Gmelin, Am. Mineral., Vol. 85, (2000), pp. 1686-1693.
[32] J.L. Shapiro, B.F. Woodfield, R. Stevens, J. Boerio-Goates, M.L. Wilson, J. Chem. Thermodyn., Vol. 31, (1999), pp. 725-739.
[33] I.H. Jung, Solid State Ionics, Vol. 177, (2006), pp. 765-777.
[34] J.A. Schuler, H. Yokokawa, C.F. Calderone, Q. Jeangros, Z. Wuillemin, A. Hessler-Wyser, J. Van herle, J. Power Sources, Vol. 201, (2012), pp. 112-120.
[35] P.D. Jablonski, D.E. Alman, J. Power Sources, Vol. 180, (2008), pp. 433-439.
[36] X. Chen, P.Y. Hou, C.P. Jacobson, S.J. Visco, L.C. De Jonghe, Solid State Ionics, Vol. 176, (2005), pp. 425-433.

Chapter 3:
References:
[1] J. Will, A. Mitterdorfer, C. Kleinlogel, D. Perednis, L.J. Gauckler, Solid State Ionics, Vol. 131, (2000), pp. 79-96.
[2] W.Z. Zhu, S.C. Deevi, Materials Science and Engineering: A, Vol. 348, (2003), pp. 227-243.
[3] C. Fu, K. Sun, D. Zhou, Journal of Rare Earths, Vol. 24, (2006), pp. 320-326.
[4] D.P. Lim, D.S. Lim, J.S. Oh, I.W. Lyo, Surf. Coat. Technol., Vol. 200, (2005), pp. 1248-1251.
[5] C.L. Chu, J.Y. Wang, R.Y. Lee, T.H. Lee, S. Lee, Journal of Fuel Cell Science and Technology, Vol. 6, (2009), pp. 031013-031013.
[6] S.J. Geng, J.H. Zhu, Z.G. Lu, Scripta Mater., Vol. 55, (2006), pp. 239-242.
[7] J.W. Fergus, Int. J. Hydrogen Energy, Vol. 32, (2007), pp. 3664-3671.
[8] S.P. Jiang, Y.D. Zhen, S. Zhang, J. Electrochem. Soc., Vol. 153, (2006), pp. A1511-A1517.
[9] T. Brylewski, M. Nanko, T. Maruyama, K. Przybylski, Solid State Ionics, Vol. 143, (2001), pp. 131-150.
[10] H.W. Nie, T.L. Wen, H.Y. Tu, Mater. Res. Bull., Vol. 38, (2003), pp. 1531-1536.
[11] W. Qua, J. Lia, D.G. Iveyb, J. Power Sources, Vol. 138, (2004), pp. 162-173.
[12] J.H. Kim, R.H. Song, S.H. Hyun, Solid State Ionics, Vol. 174, (2004), pp. 185-191.
[13] M. Burriel, G. Garcia, J. Santiso, A.N. Hansson, S. Linderoth, A. Figueras, Thin Solid Films, Vol. 473, (2005), pp. 98-103.
[14] N. Pryds, B. Toftmann, J. Schou, P.V. Hendriksen, S. Linderoth, Appl. Surf. Sci., Vol. 247, (2005), pp. 466-470.
[15] Z. Yang, G.G. Xia, X.H. Li, J.W. Stevenson, Int. J. Hydrogen Energy, Vol. 32, (2007), pp. 3648-3654.
[16] T. Brylewski, K. Przybylski, J. Morgiel, Mater. Chem. Phys., Vol. 81, (2003), pp. 434-437.
[17] W. Qu, L. Jian, J.M. Hill, D.G. Ivey, J. Power Sources, Vol. 153, (2006), pp. 114-124.
[18] T. Horita, Y. Xiong, K. Yamaji, N. Sakai, H. Yokokawa, J. Power Sources, Vol. 118, (2003), pp. 35-43.
[19] C.L. Chu, J.Y. Wang, S. Lee, Int. J. Hydrogen Energy, Vol. 33, (2008), pp. 2536-2546.
[20] G.R. Holcomb, D.E. Alman, Scripta Mater., Vol. 54, (2006), pp. 1821-1825.
[21] G. Holcomb, D. Alman, J. Mater. Eng. Perform., Vol. 15, (2006), pp. 394-398.
[22] H. Ebrahimifar, M. Zandrahimi, Solid State Ionics, Vol. 183, (2011), pp. 71-79.
[23] S. Lee, C.L. Chu, J. Gwo, J.J. Huang, M.J. Tsai, S.M. Wang, Surf. Eng., Vol. 27, (2011), pp. 531-535.

Chapter 4:
References:
[1] D.W. Yun, H.S. Seo, J.H. Jun, J.M. Lee, D.H. Kim, K.Y. Kim, Int. J. Hydrogen Energy, Vol. 36, (2011), pp. 5595-5603.
[2] Z. Yang, G.G. Xia, C.M. Wang, Z. Nie, J. Templeton, J.W. Stevenson, P. Singh, J. Power Sources, Vol. 183, (2008), pp. 660-667.
[3] J. Wu, X. Liu, J. Mater. Sci. Technol., Vol. 26, (2010), pp. 293-305.
[4] J. Rufner, P. Gannon, P. White, M. Deibert, S. Teintze, R. Smith, H. Chen, Int. J. Hydrogen Energy, Vol. 33, (2008), pp. 1392-1398.
[5] S. Geng, J. Zhu, M.P. Brady, H.U. Anderson, X.-D. Zhou, Z. Yang, J. Power Sources, Vol. 172, (2007), pp. 775-781.
[6] T. Horita, H. Kishimoto, K. Yamaji, Y. Xiong, M.E. Brito, H. Yokokawa, Y. Baba, K. Ogasawara, H. Kameda, Y. Matsuzaki, S. Yamashita, N. Yasuda, T. Uehara, Solid State Ionics, Vol. 179, (2008), pp. 2216-2221.
[7] T. Horita, K. Yamaji, Y. Xiong, H. Kishimoto, N. Sakai, H. Yokokawa, Solid State Ionics, Vol. 175, (2004), pp. 157-163.
[8] K. Fujita, K. Ogasawara, Y. Matsuzaki, T. Sakurai, J. Power Sources, Vol. 131, (2004), pp. 261-269.
[9] E. Konysheva, U. Seeling, A. Besmehn, L. Singheiser, K. Hilpert, J Mater Sci, Vol. 42, (2007), pp. 5778-5784.
[10] G.Y. Lau, M.C. Tucker, C.P. Jacobson, S.J. Visco, S.H. Gleixner, L.C. DeJonghe, J. Power Sources, Vol. 195, (2010), pp. 7540-7547.
[11] B. Hua, W. Zhang, J. Wu, J. Pu, B. Chi, L. Jian, J. Power Sources, Vol. 195, (2010), pp. 7375-7379.
[12] C.L. Chu, J.Y. Wang, S. Lee, Int. J. Hydrogen Energy, Vol. 33, (2008), pp. 2536-2546.
[13] C.L. Chu, J. Lee, T.H. Lee, Y.N. Cheng, Int. J. Hydrogen Energy, Vol. 34, (2009), pp. 422-434.
[14] S. Lee, C.L. Chu, M.J. Tsai, J. Lee, Appl. Surf. Sci., Vol. 256, (2010), pp. 1817-1824.
[15] S.F. Wang, Y.F. Hsu, C.H. Wang, C.T. Yeh, J. Power Sources, Vol. 196, (2011), pp. 5064-5069.
[16] J. Akedo, J. Therm. Spray Technol., Vol. 17, (2008), pp. 181-198.
[17] J. Akedo, J. Am. Ceram. Soc., Vol. 89, (2006), pp. 1834-1839.
[18] C.W. Kim, J.H. Choi, H.-J. Kim, D.-W. Lee, C.-Y. Hyun, S.-M. Nam, Ceram. Int., Vol. 38, (2012), pp. 5621-5627.
[19] W.Z. Zhu, S.C. Deevi, Mater. Res. Bull., Vol. 38, (2003), pp. 957-972.

Chapter 5:
References:
[1] U. Balachandran, T.H. Lee, L. Chen, S.J. Song, J.J. Picciolo, S.E. Dorris, Fuel, Vol. 85, (2006), pp.150-155.
[2] C. Zuo, T.H. Lee, S.E. Dorris, U. Balachandran, M. Liu, J. Power Sources Vol. 159, (2006), pp. 1291-1295.
[3] H. Iwahara, Solid State Ionics, Vol. 86–88, (1996), pp.9-15.
[4] J. Guan, S.E. Dorris, U. Balachandran, L. Meilin, Solid State Ionics, Vol. 110, (1998), pp.303-310.
[5] X. Wei, Y.S. Lin, Solid State Ionics, Vol. 178, (2008), pp.1804-1810.
[6] T.K. Oh, H. Yoon, E.D. Wachsman, Solid State Ionics, Vol. 180, (2009), pp.1233-1239.
[7] C. Zhang, S. Li, X. Liu, X. Zhao, D. He, H. Qiu, Q. Yu, S. Wang, L. Jiang, Int. J. Hydrogen Energy, Vol. 38, (2013), pp.12921-12926.
[8] Y.C. Liou, S.L. Yang, J. Power Sources, Vol. 179, (2008), pp. 553-559.
[9] J. Li, H. Yoon, E.D. Wachsman, J. Membrane Science, Vol. 381, (2011), pp.126-131.
[10] N. Sammes, R. Phillips, A. Smirnova, J. Power Sources, Vol. 134, (2004), pp.153-159.
[11] H. Iwahara, T. Esaka, H. Uchida, N. Maeda, Solid State Ionics, Vol. 3–4, (1981), pp.359-363.
[12] T. Oh, J.L. Li, H. Yoon, E.D. Wachsman, Ionics, Vol. 15, (2009), pp.525-530.
[13] X. Qi, Y.S. Lin, Solid State Ionics, Vol. 130, (2000), pp.149-156.
[14] H. Iwahara, Solid State Ionics, Vol. 77, (1995), pp.289–298.
[15] G.C. Mather, D. Poulidi, A. Thursfield, M.J. Pascual, J.R. Jurado, I.S. Metcalfe, Solid State Ionics, Vol. 181, (2010), pp.230-235.
[16] J. Zhang, Z. Wen, S. Huang, J. Wu, J. Han, X. Xu, Ceram. Int., Vol. 34, (2008), pp.1273-1278.
[17] S. Wang, F. Zhao, L. Zhang, K. Brinkman, F. Chen, J. Alloys Compd., Vol. 506, (2010), pp.263-267.
[18] A.N. Shirsat, K.N.G. Kaimal, S.R. Bharadwaj, D. Das, J. Solid State Chem., Vol. 177, (2004), pp. 2007-2013.
[19] I. Barin, Thermochemical Data of Pure Substances, 3rd Edition, VCH, Weinheim, 1995.
[20] J.C. Wurst, J.A. Nelson, J. Am. Ceram. Soc., Vol. 55, (1972), pp.109-109.
[21] M. I. Mendelson, J. Am. Ceram. Soc., Vol. 52, (1969), pp.443-446.
[22] P.I. Dahl, R. Haugsrud, H.L. Lein, T. Grande, T. Norby, M.A. Einarsrud, J. European Ceramic Society, Vol. 27, (2007), pp.4461-4471.
[23] M. N. Rahaman, Sintering of Ceramics, CRC Press, New York, 2008.
[24] K.D. Kreuer, Solid State Ionics, Vol. 125, (1999), pp.285-302.



指導教授 李雄(Shyong Lee) 審核日期 2014-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明