博碩士論文 983403022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:18.216.250.143
姓名 駱主安(Chu-an Luo)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 高位脛骨截骨手術之生物力學研究
(The Biomechanical Investigations for Open Wedge High Tibial Osteotomy)
相關論文
★ 高彎曲度之人工膝關節多軸向動態磨耗試驗機開發★ 人工髖關節雙軸向動態磨耗試驗平台開發
★ 以擠製冷卻成型法結合相分離法製作神經再生用多孔性導管★ 大型犬人工髖關節之應力分析
★ 人體膝關節之高度彎曲電腦動態實體模型的建立★ 足型與足壓電腦輔助分析系統開發
★ 超低溫液態氮生物試片儲存槽的研發★ 腰椎人工椎間盤之運動軌跡分析
★ 表面置換型人工臏股骨關節的設計與分析★ 二維及三維足型的應用與高跟鞋足壓的量測分析
★ 心血管支架塑性成形的有限元素分析★ 靜態穿椎弓足內固定器之剛性對腰椎受力之影響
★ 腰椎內固定器之動態型式的生物力學評估★ 超低溫高安全性生物試片儲存槽與即時監管理系統之開發
★ 超低溫液態氮生物試片儲存系統的硬體研發★ 拇趾外翻足的鞋內矯正器之設計與評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 開口式高位脛骨截骨手術是用來治療內側單側發生退化性膝關節炎,而膝關節活動度仍良好的年輕病患,其治療方式矯正膝關節已偏移的力學軸線,重新分配關節內外側的負載比例,達到減輕病患疼痛,促使軟骨再生的功效。然而開口式截骨手術難度較高,截骨矯正的過程使脛骨近端變得極不穩定,臨床上常見的失效模式包含骨釘與骨板的鬆脫或破壞,或植入物支撐能力不足使得脛骨平台斜率增加,甚至是外側脛骨斷裂導致缺口塌陷而未能達到矯正目的。
為了解決目前開口式截骨手術遭遇的問題,本研究由術前規劃開始,建立矯正角度與缺口高度之關係式,確保矯正缺口時仍能維持脛骨平台的斜率。植入物的部分以生物力學測試與電腦數值模擬的方式,研究現有單支與雙支骨板的力學傳遞與優劣,並參考分析結果,配合臨床醫師提供意見,進行新型骨板的設計。除此之外,為了簡化手術流程,提高矯正之精確性,搭配專用之截骨手術器械設計與手術流程規劃,之後利用電腦數值模擬再次驗證新型骨板的設計。因應縮短病患臥床時間的手術趨勢,本研究結合步態膝關節之力學資訊,研究截骨手術後,膝關節在步態行為下的生物力學、缺口穩定度與不利骨質癒合的受力環境。
雙支設計的骨板不論在缺口剛性、缺口穩定度與支撐強度均較單支骨板有更好的表現,步態行為下也更能降低缺口處不利骨癒合的剪力,其抗彎矩的力偶機制,能避免缺口處的槓桿效應而產生被拉伸的現象。雙支設計無可避免有較大的體積,然而選擇截骨手術固定系統時,必須在手術便利性與結構穩定性之間取捨,因此對於體重較重或有術後即下床行走需求的病患,雙支設計的骨板是較好的選擇。而單支設計的骨板配合鎖固式骨釘則適用於活動力較低且體重較輕的病患。
摘要(英) Open wedge high tibial osteotomy has been used to treat osteoarthritis of the medial compartment of the knee with good mobility. This method relieves pain and stimulates the regeneration of the cartilage by correcting the incorrect biomechanical axis of the knee and redistributing the loading ratio of the tibial plateau. However, this makes the proximal tibia a highly unstable structure and causes plate and screws to be the potentials sources for mechanical failure. Other failures like the lack supporting ability of the implant to maintain the tibial slope, or the fracture of the lateral cortex.
To solve the above-mentioned problems, this study started with the preoperative planning. The mathematical formula between the correction angle and wedge height was built for maintaining the tibial slope while correcting the angle. For the implants, the biomechanical effects of one-leg and two-leg plate systems were compared by the biomechanical tests and computer simulations. A new plate is designed based on the results of the tests and simulations, and the suggestions of the clinical surgeon. Then the computer simulation was done to verify the design. On the purpose of simplifying the surgical procedure and enhancing the accuracy, the special surgical instruments were designed, and the surgical procedure was planned. Response to the trend of shortening the bed-ridden time, the current study combined the loading informations with the finite element analysis to investigate the biomechanics, wedge stability and the unfavorable situations for wedge healing after high tibial osteotomy in gait cycle.
The two-leg plates had better outcomes in wedge stiffness, wedge stability and supporting strength. Even in gait cycle, the undesired shear force at wedge was lower than the one-leg design. The two leg can form a force-couple mechanism to eliminate the bending moment, and avoid the zone of tension at the wedge tip. The choice of the plates involved the trade-off between surgical convenience and construct stability. Consequently, the two-leg system is suggested for the patients with heavy bodyweight or early weight bearing demands. The one-leg system with locking screws can be used for the majority of the patients with less activity and without heavy bodyweight.
關鍵字(中) ★ 高位脛骨截骨手術
★ 骨板
★ 生物力學
★ 有限元素分析
★ 力學測試
★ 膝關節
關鍵字(英) ★ HTO
★ Plate
★ Biomechanics
★ Finite element analysis
★ Mechanical test
★ Knee
論文目次 摘要 i
Abstract ii
致謝 iv
目錄錄 v
圖目錄錄 ix
表目錄錄 xiii
一、 緒論論 1
1-1 前言 1
1-2 膝關節介紹 4
1-2-1 膝關節解剖學 4
1-2-2 膝關節運動學 7
1-2-3 膝關節生物力力學 12
1-2-4 骨結構與材料料性質 14
1-2-5 骨質重塑現象 18
1-3 退化性膝關節炎治療療方式 20
1-3-1 藥物與物理理治療療 20
1-3-2 膝關節鏡清創術 21
1-3-3 高位脛骨截骨手術 21
1-3-4 人工膝關節置換術 22
1-4 研究目的與方法 24
1-5 論論文架構 24
二、 文獻回顧 26
2-1-1 閉口式高位脛骨截骨手術 26
2-1-2 開口式高位脛骨截骨手術 27
2-1-3 脛骨截骨手術之失效情況 28
2-2 高位脛骨截骨手術之生物力力學測試 31
2-3 高位脛骨截骨手術之電腦數數值模擬 35
2-4 植入物之應力力遮蔽效應 36
三、 高位脛骨截骨手術角正之角度度計算 38
3-1 前言與目的 38
3-2 矯正角度度計算 43
3-3 結果討論論 50
3-4 結論論 54
四、 骨板置放位置對於脛骨截骨手術之生物力力學研究 55
4-1 前言與目的 55
4-2 脛骨骨板生物力力學測試 56
4-2-1 測試模型 56
4-2-2 測試夾治具設計 58
4-2-3 測試負載與失效標準 59
4-3 測試結果與討論論 60
4-4 脛骨骨板有限元素分析與疲勞勞壽命預測 62
4-4-1 脛骨截骨手術三維模型重建 63
4-4-2 零零件材質設定 65
4-4-3 零零件介面設定 66
4-4-4 網格參參數數設定 67
4-4-5 生物力力學負載與疲勞勞分析設定 68
4-4-6 有限元素模型驗證 69
4-5 分析結果與討論論 70
4-5-1 有限元素模型驗證 70
4-5-2 有限元素力力學分析 72
4-5-3 疲勞勞壽命預測 76
4-5-4 研究限制 77
4-6 結論論 78
五、 高位脛骨截骨手術骨板與手術器械設計 80
5-1 前言與目的 80
5-2 高位脛骨截骨手術骨板設計 83
5-2-1 三維脛骨模型重建 83
5-2-2 國人脛骨均質化模型 83
5-2-3 電腦模擬截骨手術模型 89
5-2-4 脛骨截骨手術骨板設計 90
5-3 手術器械設計 92
5-4 結論論 96
六、 脛骨截骨手術固定系統之應力力與穩定度度比較 97
6-1 前言與目的 97
6-2 有限元素分析 98
6-2-1 分析模型建立立 98
6-2-2 零零件材質設定 99
6-2-3 零零件介面與網格設定 99
6-2-4 生物力力學負載 100
6-3 分析結果 101
6-3-1 骨釘、骨板與骨頭之應力力集中 101
6-3-2 缺口位移與雙支負載比例例 102
6-4 結果討論論 103
6-5 結論論 105
七、 脛骨截骨手術固定系統於術後步態對於骨融合的影響 107
7-1 前言與目的 107
7-2 脛骨截骨手術之步態有限元素分析 110
7-2-1 分析模型建立立 110
7-2-2 零零件材質設定 111
7-2-3 零零件介面與網格設定 112
7-2-4 步態力力學負載 113
7-3 分析結果 119
7-3-1 缺口剪力力 119
7-3-2 最大應力力與斷裂裂風險 120
7-3-3 缺口位移 123
7-4 結果討論論 124
7-5 結論論 126
八、 結論論與未來來展望 128
8-1 結論論 128
8-2 未來來展望 129
參參考文獻 131
參考文獻 [1] John WH, Karen AK. Human Anatomy,胡明一、孫穆乾、陳懿慧等譯,藝軒圖書,民國八十四年。
[2] Medical Tourism Corporation [http://www.medicaltourismco.com]
[3] Martini FH, Bartholomew EF. Essentials of Anatomy & Physiology,林自勇、鄧志娟、 陳瑩玲等譯,解剖生理學,全威圖書,民國九十二年。
[4] Woo SL, Debski RE, Withrow JD, Janaushek MA. Biomechanics of knee ligaments. Am J Sports Med. 1999; 27(4): 533-543.
[5] 呂厚山,人工關節外科學,科學出版社,北京,1998。
[6] Tom FN. The biomechanics of running. Gait Posture. 1998; 7: 77-95.
[7] LaFortune MA, Cavanagh PR, Sommer HJ 3rd, Kalenak A. Three-dimensional kinematics of the human knee during walking. J Biomech. 1992; 25(4): 347- 357.
[8] Desjardins JD, Walker PS, Haider H, Perry J. The use of a force-controlled dynamic knee simulator to quantify the mechanical performance of total knee replacement designs during functional activity. J Biomech. 2000; 33(10): 1231-1242.
[9] Walker PS, Blunn GW, Broome DR, Perry J, Watkins A, Sathasivam S, Dewar ME, Paul JP. A knee simulating machine for performance evaluation of total knee replacements. J Biomech. 1997; 30(1): 83-89.
[10] ClydeNET [http://www.gla.ac.uk/t4/~fbls/files/fab/contents.html]
[11] Victoria LC, Maureen T, Edmund NB. Comparison of two normative paediatric gait databases. Dyn Med. 2007; 6: 8.
[12] Luo CF. Reference axes for reconstruction of the knee. Knee. 2004; 11(4): 251-257.
[13] Amir MN, Leila ASB, Behrouz N. A comparative assessment of alternatives to the full-leg radiograph for determining knee joint alignment. Sports Med Arthrosc Rehabil Ther Technol. 2012; 4: 40.
[14] Andreacollo [http://andreacollo.wordpress.com]
[15] Johnson F, Scarrow P, Waugh W. Assessments of loads in the knee joint. Medical and Biological Engineering and Computing. Med Biol Eng Comput. 1981; 19(2): 237-243.
[16] Morrison JB. The mechanics of the knee joint in relation to normal walking. J Biomech. 1970; 3: 51-61.
[17] Kuster MS, Wood GA, Stachowiak GW, Gachter A. Joint load considerations in total knee replacement. J Bone Joint Surg Am. 1997; 79(1): 109-113.
[18] Taylor M, Tanner KE. Fatigue failure of cancellous bone: a possible cause of implant migration and loosening. J Bone Joiny Surg Br,1997; 79: 181-182.
[19] Paul JP. Forces transmitted by joints in the human body. Proc Inst Mech Eng. 1967.
[20] Schipplein OD, Andriacchi TP. Interaction between active and passive knee stabilizers during level walking. J Orthop Res. 1991; 9(1): 113-119.
[21] Terrier A. Adaptation of bone to mechanical stress: theoretical model, experimental identification and orthopedic application. Swiss Federal Institute of Technology. PhD Thesis, 1999.
[22] Cowin SC, Hegedus DH. Bone remodeling I: theory of adaptive elasticity. J Elasticity. 1976; 6: 313-326.
[23] Reilly DT, Burstein AH. The elastic and ultimate properties of compact bone tissue. J Biomech. 1975; 8: 393-405.
[24] Ford CM, Keaveny TM. The dependence of shear failure properties of trabecular bone on apparent density and trabecular orientation. J Biomech. 1996; 29(10): 1309-1317.
[25] Fyhrie DP, Vashishth D. Bone stiffness predicts strength similarly for human vertebral cancellous bone in compression and for cortical bone in tension. Bone. 2000; 26(2): 169-173.
[26] Keaveny TM, Wachtel EF, Ford CM, Hayes WC. Differences between the tensile and compressive strengths of bovine tibial trabecular bone depend on modulus. J Biomech. 1994; 27(9): 1137-1146.
[27] Kopperdahl DL, Keaveny TM. Yield strain behavior of trabecular bone. J Biomech. 1998; 31(7): 601-608.
[28] Linde F, Hvid I, Madsen F. The effect of specimen geometry on the mechanical behaviour of trabecular bone specimens. J Biomech. 1992; 25(4): 359-368.
[29] Morgan EF, Keaveny TM. Dependence of yield strain of human trabecular bone on anatomic site. J Biomech. 2001; 34(5): 569-577.
[30] Wolff JL. The law of bone remodeling. (Das Gesetz der Transformation der knochen, Kirschwald, 1982.) (Translated by Marquet P, Furlong R.) Springer, Berlin, 1986.
[31] Chamay A, Tschantz P. Mechanical influence in bone remodeling. Experimental research on Wolff’s law. J Biomech. 1972; 5: 173-180.
[32] Lanyon LE. The measurement and biological significance of bone strain in vivo. In: Cowin SC (ed) Mechanical properties of bone. ASME, New York. 1981; 93-105.
[33] O′Conner JA, Lanyon LE. The effects of strain rate on mechanically adaptive bone remodeling. 28th Annual Orthopaedic Research Society, New Orleans, LA. 1982.
[34] BurrBurr DB, Martin RB, Schaffler MB, Radin EL. Bone remodeling in response to in vivo fatigue microdamage. J Biomech. 1985; 18(3): 189-200.
[35] Hurwitz DE, Sumner DR, Andriacchi TP, Sugar DA. Dynamic knee loads during gait predict proximal tibial bone distribution. J Biomech. 1998; 31(5): 423-430.
[36] Ryohei T, Hiroyuki I, Masato A, Haruhiko B, Izumi S, Ken K, Yasuhsi A, Tomoyuki S. Medial opening wedge high tibial osteotomy with early full weight bearing. J Arth Rel Surg. 2009; 25(1): 46-53.
[37] Spahn G, Wittig R. Primary stability of various implants in tibial opening wedge osteotomy: a biomechanical study. J Orthop Sci. 2002; 7(6): 683-687.
[38] Jackson JP, Waugh W, Green JP, Wood H. High tibial osteotomy for osteoarthritis of the knee. J Bone Joint Surg Br. 1969; 51(1): 88-94.
[39] Scarvell JM, Smith PN, Refshauge KM, Galloway HR, Woods KR. Evaluation of a method to map tibiofemoral contact points in the normal knee using MRI. Journal of Orthopaedic Research. 2004; 22: 788-793.
[40] Orthopale.com [http://www.orthopale.com]
[41] Bone Smart [http://bonesmart.org]
[42] Edheads [http://www.edheads.org]
[43] Jackson JP. Osteotomy for osteoarthritis of the knee. In proceedings of the heffield regional orthopaedic club. J Bone Joint Surg. 1958; 40B: 826.
[44] Harris WR, Kostuik JP. High tibial osteotomy for osteo-arthritis of the knee. J Bone Joint Surg Am. 1970; 52: 330-336.
[45] Miniaci A, Ballmer FT, Ballmer PM, Jakob RP. Proximal tibial osteotomy: A new fixation device. Clin Orthop Relat Res. 1989; 246: 250-259.
[46] Koshino T, Wada S, Ara Y, Saito T. Regeneration of degenerated articular cartilage after high tibial valgus osteotomy for medial compartmental osteoarthritis of the knee. Knee. 2003; 10(3): 229-236.
[47] Billings A, Scott DF, Camargo MP, Hofmann AA. High tibial osteotomy with a calibrated osteotomy guide, rigid internal fixation, and early motion. Long-term follow-up. J Bone Joint Surg Am. 2000; 82(1): 70-79.
[48] Lobenhoffer P, Agneskirchner JD. Improvements in surgical technique of valgus high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc. 2003; 11(3): 132-138.
[49] Coventry MB. Upper tibial osteotomy for osteoarthritis. J Bobe Joint Surg Am. 1985; 67: 1136-1140.
[50] Slawski DP, Schoenecker PL, Rich MM. Peroneal nerve injury as a complication of pediatric tibial osteotomies: a review of 255 osteotomies. J Pediatr Orthop. 1994; 14: 166-172.
[51] Flierl S, Sabo D, Hornig K, Perlick L. Open wedge high tibial osteotomy using fractioned drill osteotomy: a surgical modification that lowers the complication rate. Knee Surg Sports Traumatol Arthrosc. 1996; 4(3): 149-153.
[52] Amendola A, Bonasia DE. Results of high tibial osteotomy: review of the literature. Int Orthop. 2010; 34(2): 115-160.
[53] Jackson JP, Waugh W. Tibial osteotomy for osteoarthritis of the knee. Proc R Soc Med. 1960; 53(10): 888.
[54] Coventry MB. Osteotomy of the upper portion of the tibia for degenerative arthritis of the knee: a preliminary report. J Bone Joint Surg Am. 1965; 47(5): 984-990.
[55] Insall JN, Joseph DM, Msika C. High tibial osteotomy for varus gonarthrosis. A long-term follow-up study. J Bone Joint Surg. 1984; 66(7): 1040-1048.
[56] Devas MB. High tibial osteotomy for arthritis of the knee. J Bone Joint Surg Br. 1969; 51B(1): 95-99.
[57] Flecher X, Parratte S, Aubaniac JM, Argenson JN. A 12-28-year followup study of closing wedge high tibial osteotomy. Clin Orthop Relat Res. 2006; 452: 91-96.
[58] Debeyre J, Artigou JM. Logn term results of 260 tibial osteotomies for frontal deviations of the knee. Rev Chir Orthop Reparatrice Appar Mot. 1972; 58(4): 335-339.
[59] Lee SC, Kwang AJ, Chang HN, Soong HJ, Seung HH. The short-term follow-up results of open wedge high tibial osteotomy with using an Aescula Open Wedge Plate and an Allogenic Bone Graft: The minimum 1-year follow-up results. Clin Orthop Surg. 2010; 2(1): 47-54.
[60] Agneskirchner JD, Freiling D, Hurschler C, Lobenhoffer P. Primary stability of four different implants for opening wedge high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc. 2006; 14(3): 291-300.
[61] Blecha LD, Zambelli PY, Ramaniraka NA, Bourban PE, Manson JA, Pioletti DP. How plate positioning impacts the biomechanics of the open wedge tibial osteotomy: A finite element analysis. Comput Meth Biomech Biomed Eng. 2005; 8(5): 307-313.
[62] Staubli AE, Simoni CD, Babst R, Lobenhoffer P. TomoFix: a new LCP-concept for open wedge osteotomy of the medial proximal tibia – early results in 92 cases. Injury. 2003; 34(2): 55-62.
[63] Stoffel K, Stachowiak G, Kuster M. Open wedge high tibial osteotomy biomechanical investigation of the modified Arthrex Osteotomy Plate and the TomoFix Plate. Clin Biomech. 2004; 19(9): 944-950.
[64] Hernigou P, Ma W. Open wedge tibial osteotomy with acrylic bone cement as bone substitute. Knee. 2001; 8: 103-110.
[65] Koshino T, Murase T, Takagi T, Saito T. New bone formation around porous hydroxyapatite wedge implanted in opening wedge high tibial osteotomy in patients with osteoarthritis. Biomaterials. 2001; 22: 1579-1582.
[66] Ranieri L, Traina GC, Maci C. High tibial osteotomy in osteoarthrosis of the knee (a long term clinical study of 187 cases). Ital J Orthop Traumatol. 1977; 3: 289-300.
[67] Siguier M, Brumpt B, Siguier T, Piriou P, Judet T. Original valgus tibial osteotomy by internal opening and without loss of bone contact: technique and incidence of consolidation speed: a preliminary series of 33 cases. Rev Chir Orthop Reparatrice Appar Mot. 2001; 87: 183-188.
[68] Georgoulis AD, Makris CA, Papageorgiou CD, Moebius UG, Xenakis T, Soucacos PN. Nerve and vessel injuries during high tibial osteotomy combined with distal fibular osteotomy: a clinically relevant anatomic study. Knee Surg Sports Traumatol Arthrosc. 1999; 7: 15-19.
[69] Magyar G, Ahl TL, Vibe P, Toksvig-Larsen S, Lindstrand A. Open-wedge osteotomy by hemicallotasis or the closed-wedge technique for osteoarthritis of the knee: a randomised study of 50 operations. J Bone Joint Surg Br. 1999; 81(3): 444.
[70] Hernigou PH, Medevielle D, Debeyre J, Goutallier D. Proximal tibial osteotomy for osteoarthritis with varus deformity. A ten to thirteen-year follow-up study. J Bone Joint Surg Am. 1987; 69(3): 332-354.
[71] Nelissen EM, Langelaan EJ, Nelissen RGHH. Stability of medial opening wedge high tibial osteotomy: a failure analysis. Int Orthop. 2010; 34(2): 217-223.
[72] Spahn G. Complications in high tibial (medial opening wedge) osteotomy. Arch Orthop Trauma Surg. 2004; 124(10): 649-653.
[73] Ducat A, Sariali E, Lebel B, Mertl P, Hernigou P, Flecher X, Zayni R, Bonnin M, Jalil R, Amzallag J, Rosset P, Servien E, Gaudot F, Judet T, Catonné Y. Posterior tibial slope changes after opening- and closing-wedge high tibial osteotomy: a comparative prospective multicenter study. Orthop Traumatol Surg Res. 2012; 98(1): 68-74.
[74] Stuart MJ, Beachy AM, Grabowski JJ, An KN, Kaufman KR. Biomechanical evaluation of a proximal tibial opening-wedge osteotomy plate. Am J Knee Surg. 1999; 12: 148-153.
[75] Fouad Z, George YL, Hugo V, Kaouthar S, L’Hocine Y. Biomechanical stability of high tibial opening wedge osteotomy- Internal fixation versus external fixation. Clin Biomech. 2005; 20(8): 871-876.
[76] Ryohei T, Haruhiko B, Yasushi A, Toshihiko S, Shin M, Tomihisa K, Tomoyuki S. In vitro stability of open wedge high tibial osteotomy with synthetic bone graft. The Knee. 2010; 17(3): 217-220.
[77] Younger EM, Chapman W. Morbidity at Bone Graft Donor Sites. J Orthop Trauma. 1989; 3(3): 192-195.
[78] Sgaglione NA, Moynihan DP, Uggen C. The Use of Allografts in High Tibial Osteotomy: Opening Wedge Technique. Oper Techn Sport Med. 2007; 15(2): 72-80.
[79] Sato H, Morishita S. Effect of quadriceps exercise on synostosis following tibial osteotomy with internal fixation: a finite element simulation. Clin Biomech. 14(1); 1999: 1-6.
[80] Stepanović Z, Zivković M, Vulović S, Aćimović L, Ristić B, Matić A, Grujović Z. High, open wedge tibial osteotomy: finite element analysis of five internal fixation modalities. Vojnosanit Pregl. 2011; 68(10): 867-871.
[81] Raja MARI, Mohammed RAK, Abdul HAR, Golam H, Kamarul T. Finite element analysis of Puddu and Tomofix plate fixation for open wedge high tibial osteotomy. Injury. 2012; 43: 898-902.
[82] Hyun KIM, Kyung WNHA, Sung JLEE. A biomechanical analysis on the sensitivity of bone graft and osteotomy orientation in relation to post-operative stability in open wedge high tibial osteotomy. J Biomech Sci Eng. 2012; 7(4): 358-368.
[83] Engh CA, Bobyn JD, Glassman AH. Porous-coated hip replacement. The factors governing bone ingrowth, stress shielding, and results. J Bone Joint Surg Br. 1987; 69-B(1): 45-55.
[84] Tai CL, Chen WP, Lee MS, Lee PC, Shih CH. Comparison of stress shielding between straight and curved stems in cementless total hip arthoplasty- an in vitro experimental study. J Med Biol Eng. 2004; 24(4): 177-181.
[85] William DB, William JC, Engh CA, Charles AE. Long-term clinical consequences of stress-shielding after total hip arthroplasty without cement. J Bone Joint Surg Am. 1997; 79: 1007-1012.
[86] Fujisawa Y, Masuhara K, Shiomi S. The effect of high tibial osteotomy on osteoarthritis of the knee. An arthroscopic study of 54 knee joints. Orthop Clin North Am. 1979; 10: 585–608.
[87] Amis AA. Biomechanics of high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc. 2013; 21(1): 197-205.
[88] Marti CB, Gautier E, Wachtl SW, Jakob RP. Accuracy of frontal and sagittal plane correction in open-wedge high tibial osteotomy. Arthroscopy. 2004; 20: 366-372.
[89] Hofmann S, Lobenhoffer P, Staubli A, Van Heerwaarden R. Osteotomies of the knee joint in patients with mono-compartmental arthritis. Orthopade. 2009; 38: 755-770.
[90] Bauer GCH, Insall J, Koshino T. Tibial Osteotomy in Gonarthrosis (Osteo-Arthritis of the Knee). J Bone Joint Surg Am. 1969; 51(8): 1545-1563.
[91] Ilizarov - Lectures delivered by Milind Chaudhary [http://ilizarov.org/pdf/Arthritis.pdf]
[92] El-Azab H, Glabgly P, Paul J, Imhoff AB, Hinterwimmer S. Patellar height and posterior tibial slope after open- and closed-wedge high tibial osteotomy: a radiological study on 100 patients. Am J Sports Med. 2010; 38: 323-329.
[93] Lee YS, Park SJ, Shin VI, Lee JH, Kim YH, Song EK. Achievement of targeted posterior slope in the medial opening wedge high tibial osteotomy: a mathematical approach. Ann Bio Med Eng. 2010; 38: 583-593.
[94] Rodner CM, Adams DJ, Diaz-Doran V, Tate JP, Santangelo SA, Mazzocca AD, Arciero RA. Medial opening wedge tibial osteotomy and the sagittal plane: the effect of increasing tibial slope on tibiofemoral contact pressure. Am J Sports Med. 2006; 34: 1431-1441.
[95] Giffin JR, Vogrin TM, Zantop T, Woo SLY, Harner CD. Effects of increasing tibial slope on the biomechanics of the knee. Am J Sports Med. 2004; 32: 376-382.
[96] Liu-Barba D, Hull ML, Howell SM. Coupled motions under compressive load in intact and ACL-deficient knees: a cadaveric study. J Biomech Eng. 2007; 129: 818-824.
[97] Shelburne KB, Kim HJ, Sterett WI, Pandy MG. Effect of posterior tibial slope on knee biomechanics during functional activity. J Orthop Res. 2010; 28: 1-9.
[98] Hashemi J, Chandrashekar N, Gill B, Beynnon BD, Slaughter- beck JR, Schutt RC, Mansouri H, Dabezies E. The geometry of the tibial plateau and its influence on the biomechanics of the tibiofemoral joint. J Bone Joint Surg Am. 2008; 90: 2724-2734.
[99] Song EK, Seon JK, Park SJ. How to avoid unintended increase of posterior slope in navigation-assisted open-wedge high tibial osteotomy. Orthopedics. 2007; 30(10): S127-131.
[100] Frank RN, Steven XG, John W. Opening wedge tibial osteotomy - The 3-triangle method to correct axial alignment and tibial slope. Am J Sports Med. 2005; 33(3): 378-387.
[101] Lee YS, Park SJ, Vladimir IS, Lee JH, Kim YH, Song EK. Achievement of targeted posterior slope in the medial opening wedge high tibial osteotomy: A mathematical approach. Ann Biomed Eng. 2010; 38(3): 583-593.
[102] Song EK, Seon JK, Park SJ. How to avoid unintended increase of posterior slope in navigation- assisted open-wedge high tibial osteotomy. Orthopedics. 2007; 1830:s127-s131.
[103] Schröter S, Gonser CE, Konstantinidis L, Helwig P, Albrecht D. High Complication Rate After Biplanar Open Wedge High Tibial Osteotomy Stabilized With a New Spacer Plate (Position HTO Plate) Without Bone Substitute. Arthroscopy. 2011; 27: 644-652.
[104] Kolb W, Guhlmann H, Windisch C, Kolb K, Koller H, Grützner P. Opening-wedge high tibial osteotomy with a locked low-profile plate. J Bone Joint Surg Am. 2009; 91: 2581-2588.
[105] Koshino T, Murase T, Saito T. Medial opening-wedge high tibial osteotomy with use of porous hydroxyapatite to treat medial compartment osteoarthritis of the knee. J Bone Joint Surg Am. 2003; 85A: 78-85.
[106] Christoph BM, Emanuel G, Stefan WW, Roland PJ. Accuracy of frontal and sagittal plane correction in open-wedge high tibial osteotomy. J Arthros Rel Surg. 2004; 20: 366-372.
[107] Yanasse RH, Cavallari CE, Chaud FL, Hernandez AJ, Mizobuchi RR, Laraya MH. Measurement of tibial slope angle after medial opening wedge high tibial osteotomy: case series. Sao Paulo Med J. 2009; 127: 34-39.
[108] Dietrich P, Olaf L, Christian S, Lüder CB, Nicolien G, Romain S, Dieter MK. Effect of a biplanar osteotomy on primary stability following high tibial osteotomy: a biomechanical cadaver study. Knee Surg Sports Traumatol Arthrosc. 2010; 18: 204–211.
[109] Rafael LDF, Rodrigo CR, Cleber AJP, Antônio CS, Maurício KJ. Open wedge tibial osteotomy: biomechanical relevance of the opposite cortex for the fixation method. Acta Ortop Bras. 2010; 18(4): 224-229.
[110] Luo CA, Lin SC, Hua SY, Chen CM, Tseng CS. Stress and stability comparison between different systems for high tibial osteotomies. BMC Musculoskel dis. 2013; 14: 110.
[111] Sawbones [http://www.sawbones.com]
[112] 實威國際: SolidWorks Simulation 原廠教育手冊; 2011
[113] Paley D, Pfeil J. Principles of deformity correction around the knee. Orthopedics. 2000; 29: 18-38.
[114] Sonoda N, Chosa E, Totoribe K, Tajima N. Biomechanical analysis for stress fractures of the anterior middle third of the tibia in athletes: nonlinear analysis using a three-dimensional finite element method. J orthop Sci. 2003; 8: 505-513.
[115] Taylor WR, Heller MO, Bergmann G, Duda GN. Tibio-femoral loading during human gait and stair climbing. J Orthopaedic Res. 2004; 22: 625-632.
[116] Niinomi M. Fatigue characteristics of metallic biomaterials. Int J Fatigue. 2007; 29(6): 992-1000.
[117] Zioupos P, Wang XT, Currey JD. The accumulation of fatigue microdamage in human cortical bone of two different ages in vitro. Clin Biomech. 1996; 11(7): 365-375.
[118] Peter Z, Xiao TW, John DC. Experimental and theoretical quantification of the development of damage in fatigue tests of bone and antler. J Biomech. 1996; 29(8): 989-1002.
[119] Winter CC, Brandes M, Müller C, Schuber T, Ringling M, Hillmann A, Rosenbaum D, Schulte TL. Walking ability during daily life in patients with osteoarthritis of the knee or the hip and lumbar spinal stenosis: a cross sectional study. BMC Musculoskel dis. 2010; 11: 233.
[120] Silva M, Shepherd EF, Jackson WO, Dorey FJ, Schmalzried TP. Average patient walking activity approaches 2 million cycles per year: pedometers under-record walking activity. J Arthroplasty. 2002; 17: 693-697.
[121] Completo A, Fonseca F, Simões JA. Finite element and experimental cortex strains of the intact and implanted tibia. J Biomech Eng. 2007; 129(5): 791-797.
[122] Cronier P, Pietu G, Dujardin C, Bigorre N, Ducellier F, Gerard R. The concept of locking plates. Orthop Traumatol Surg Res. 2010; 96S: S17-S36.
[123] Dejour H, Bonnin M. Tibial translation after anterior cruciate ligament rupture: two radiological tests compared. J Bone Joint Surg Br. 1994; 76: 745-749.
[124] Augat P, Burger J, Schorlemmer S, Henke T, Peraus M, Claes L. Shear movement at the fracture site delays healing in a diaphyseal fracture model. J Orthop Res. 2003; 21: 1011-1017.
[125] Noordeen MH, Lavy CB, Shergill NS, Tuite JD, Jackson AM. Cyclical micromovement and fracture healing. J Bone Joint Surg Br. 1995; 77: 645-648.
[126] Benli S, Aksoy S, HavItcIoglu H, Kucuk M. Evaluation of bone plate with low-stiffness material in terms of stress distribution. J Biomech. 2008; 41: 3229-3235.
[127] Fan Y, Xiu K, Duan H, Zhang M. Biomechanical and histological evaluation of the application of biodegradable poly-L-lactic cushion to the plate internal fixation for bone fracture healing. Clin Biochem. 2008; 23: S7-16.
[128] Zayontz GLS, DeFrate LE, Most E, Harry JFS, Rubash E. Kinematics of the knee at high flexion angles: an in vitro investigation. J Orthop Res. 2004; 22: 90-95.
[129] Hemmerich A, Brown H, Smith S, Marthandam SSK, Wyss UP. Hip, knee, and ankle kinematics of high range of motion activities of daily living. J Orthop Res. 2006; 24: 770-781.
[130] Shelburne KB, Torry MR, Pandy MG. Muscle, ligament, and joint-contact forces at the knee during walking. Med Sci Sports Exerc. 2005; 1948-1956.
[131] Szivek JA, Cutignola L, Volz RG. Tibiofemoral contact stress and stress distribution evaluation of total knee arthroplasties. J Arthroplasty. 1995; 10(4): 480-491.
[132] Joseph BC, Casey D, David MW, John MK, Susan PJ, Rose HP. Comparison of the mechanical behaviors of locked and nonlocked plate/screw fixation applied to experimentally induced rotational osteotomies in canine ilia. Vet Surg. 2012; 41: 103-113.
[133] Zaki SH, Rae PJ. High tibial valgus osteotomy using the Tomofix plate-medium-term results in young patients. Acta Orthop Belq. 2009; 75: 360-367.
[134] Valkering KP, van den Bekerom MP, Kappelhoff FM, Albers GH. Complications after tomofix medial opening wedge high tibial osteotomy. J Knee Surg. 2009; 22: 218-225.
[135] Brosset T, Pasquierb G, Migaudb H, Gougeon F. Opening wedge high tibial osteotomy performed without filling the defect but with locking plate fixation (TomoFix™) and early weight-bearing: Prospective evaluation of bone union, precision and maintenance of correction in 51 cases. Orthop Traumatol Surg Res. 2011; 97: 705-711.
[136] Noyes FR, Mayfield W, Barber-Westin SD, Albright JC, Heckmann TP. Opening wedge high tibial osteotomy: an operative technique and rehabilitation program to decrease complications and promote early union and function. Am J Sports Med. 2006; 34: 1262-1273.
[137] Gueorguiev B, Ockert B, Schwieger K, Wähnert D, Lawson SM, Windolf M, Stoffel K. Angular stability potentially permits fewer locking screws compared with conventional locking in intramedullary nailed distal tibia fractures: a biomechanical study. J Orthop Trauma. 2011; 25: 340-346.
[138] Eric JS, Ran S, Frederick K, Kenneth AE. The current status of locked plating: the good, the Bad, and the ugly. J Orthop Trauma. 2008; 22: 479-486.
[139] Seide K, Zierold W, Wolter D, Kortmann HR. The effect of an angle-stable plate-screw connection and various screw diameters on the stability of plate osteosynthesis. An FE model study. Unfallchirurg. 1990; 93: 552-558.
[140] Pilliar RM, Lee JM, Maniatopoulos C. Observations on the effect of movement on bone ingrowth into porous-surfaced implants. Clin Orthop Relat Res. 1986; 208: 108-113.
[141] KazImoglu C, Akdogan Y, Sener M, Kurtulmus A, KarapInar H, Uzun B. Which is the best fixation method for lateral cortex disruption in the medial open wedge high tibial osteotomy? A biomechanical study. Knee. 2008; 15: 305-308.
[142] Kim SH, Chang SH, Jung HJ. The finite element analysis of a fractured tibia applied by composite bone plates considering contact conditions and time-varying properties of curing tissues. Compos Struct. 2010; 92: 2109-2118.
[143] Brouwer RW, Bierma-Zeinstra SM, van Raaij TM, Verhaar JA. Osteotomy for medial compartment arthritis of the knee using a closing wedge or an opening wedge controlled by a Puddu plate. A one-year randomised, controlled study. J Bone Joint Surg Br. 2006; 88: 1454-1459.
[144] Marti RK, Verhagen RA, Kerkhoffs GM, Moojen TM. Proximal tibial varus osteotomy. Indications, technique, and five to twenty-one-year results. J Bone Joint Surg Am. 2001; 83: 164-170.
[145] Ganesh VK, Ramakrishna K, Ghista Dhanjoo N. Biomechanics of bone-fracture fixation by stiffness-graded plates in comparison with stainless-steel plates. Biomed Eng Online. 2005; 4: 46.
[146] Stephan MP. Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation: choosing a new balance between stability and biology. J Bone Joint Surg Br. 2002; 84(8): 1093-1110.
[147] Williams A, Loganb M. Understanding tibio-femoral motion. Knee. 2004; 11: 81-88.
[148] Andriacchi TP, Dyrby CO, Johnson TS. The use of functional analysis in evaluating knee kinematics. Clin Orthop Relat Res. 2003; 410: 44-53.
[149] Thambyah A, Pereira BP, Wyss U. Estimation of bone-on-bone contact forces in the tibiofemoral joint during walking. Knee. 2005; 12(5): 383-388.
[150] Halloran JP, Petrella AJ, Rullkoetter PJ. Explicit finite element modeling of total knee replacement mechanics. J Biomech. 2005; 38: 323-331.
[151] Laz PJ, Pal S, Halloran JP, Petrella AJ, Rullkoetter PJ. Probabilistic finite element prediction of knee wear simulator mechanics. J Biomech. 2006; 39: 2303-2310.
[152] Checa S, Taylor M, New A. Influence of an interpositional spacer on the behaviour of the tibiofemoral joint: A finite element study. Clin Biomech.2008; 23: 1044-1052.
[153] Kang KT, Park JH, Lee KI, Shim YB, Jang JW, Chun HJ. Gait Cycle Comparions of Cruciate Sacrifice for Total Knee Design.-Explicit Finite Element. Int J Precis Eng Man. 2012; 13(11): 2043-2049.
[154] Liu F, Kozanek M, Hosseini A, Van de Velde SK, Rubash HE, Li G. In vivo tibiofemoral cartilage deformation during the stance phase of gait. J Biomech. 2010; 43: 658-665.
[155] Tarniţă D, Popa D, Tarniţă DN, Grecu D. CAD method for three-dimensional model of the tibia bone and study of stresses using the finite element method. Rom J Morphol Embryol. 2006; 47(2): 181-186.
指導教授 曾清秀、林上智
(Ching-Shiow Tseng、Shang-Chih Lin)
審核日期 2014-9-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明