參考文獻 |
1. Armour, G. C., Buffa, E. S., 1963. A heuristic algorithm and simulation approach to the relative location of facilities. Management Science, 9(2), 294-309.
2. Banerjee, P., Montreuil, B., Moodie, C. L., and Kashyap, R. L., 1992. A modeling of interactive facilities layout designer reasoning using qualitative patterns. International Journal of Production Research, 30(3), 433-453.
3. Blum, C., 2005. Beam-ACO-Hybridizing ant colony optimization with beam search: an application to open shop scheduling. Computers & Operations Research, 32(6), 1565-1591.
4. Blum, C., 2005. Ant colony optimization: introduction and recent trends. Physics of Live Reviews, 2(4), 353-373.
5. Bozer, Y.A., Wang, C. T., 2011. A Graph-Pair Representation and MIP-Model-Based Heuristic for the Unequal-Area Facility Layout Problem. Working paper.
6. Bullnheimer, B., Sreauss, H. R., 1999. A new rank-based version of the ant system: a computational study. Central European Journal for Operations Research and Economics, 7(1), 25-38.
7. Costa, D., Hertz, A., 1997. Ants can color graphs. Journal of the Operational Research Society, 48, 295-305.
8. den Besten, M.L., Stützle, T., and Dorigo,M., 2000. Ant colony optimization for the total weighted tardiness problem. In: Schoenauer, M. et al., editors. Proceedings of PPSN-VI, sixth international conference on parallel problem solving from nature. Lecture Notes in Computer Science, 1917, 611-620.
9. Dijkstra, E. W., 1959. A note on two problems in connection with graphs. Numerical Mathematics, 1, 269-271.
10. Dorigo, M., 1992. Optimization, learning and natural algorithms. PhD thesis, Politecnico di Milano.
11. Dorigo, M., Blum, C., 2005. Ant colony optimization theory: A survey. Theoretical Computer Science, 344, 243-278.
12. Dorigo, M., Gambardella, L. M., 1997. Ant colony system: A Cooperative learning approach to the travelling salesman problem. IEEE Transactions on Evolutionary Computation, 1(1), 53-66.
13. Dorigo, M., Maniezzo, V., and Colorni, A., 1991. Positive feedback as a search strategy. Technical Report, 91-016.
14. Dorigo, M., Maniezzo, V., and Colorni, A., 1996. Ant system: optimization by a colony of cooperating agents. IEEE Transactions on System, Management, and Cybernetics-Part B: Cybernetics, 26(1), 29-41.
15. Gagné, C., Price, W.L., and Gravel, M., 2002. Comparing an ACO algorithm with other heuristics for the single machine scheduling problem with sequence dependent setup times. Journal of the Operational Research Society, 53, 895-906.
16. Gambardella, L.M., Taillard, É.D., and Agazzi, G.1999. MACS-VRPTW: A multiple ant colony system for vehicle routing problems with time windows. In: Corne, D., Dorigo, M., Glover, F., editors. New ideas in optimization. London: McGraw-Hill, 63-76.
17. Hani, Y. Amodeo, L., Yalaoui, F., and Chen, H., 2007. Ant colony optimization for solving an industrial layout problem. European Journal of Operational Research, 183, 633-642.
18. Kao, Y., Cheng K., 2006. An ACO-based clustering algorithm. Lecture Notes in Computer Science, 4150, 340-347.
19. Komarudin, and Wong, K. Y., 2010. Applying ant system for solving unequal area facility layout problem. European Journal of Operational Research, 202, 730-746.
20. Koopmans, T. C., and Beckman, M., 1957. Assignment problems and the location of economic activities. Econometrica, 25, 53-76.
21. Liu, Q., Meller, R. D., 2007. A sequence-pair representation and MIP-model-based heuristic for the facility layout problem with rectangular department. IIE Transctions, 39, 377-394.
22. Maniezzo, V., 1999. Exact and approximate nondeterministic tree-search procedures for the quadratic assignment problem. INFORMS Journal on Computing, 11, 358-369.
23. Maniezzo, V., Colorni, A., Dorigo, M., 1994. The ant system applied to the quadratic assignment problem. Technical report IRIDIA, Universite′ Libre de Bruxelles, 94-128.
24. Meller, R. D., Chen W., and Sherali, H. D., 2007. Applying the sequence-pair representation to optimal facility layout designs. Operations Research Letters, 35(5), 651-659.
25. Meller, R. D., Narayanan, V., and Vance, P. H., 1999. Optimal facility layout design. Operations Research Letters, 23(3-5), 117-127.
26. Montreuil, B., 1990. A modelling framework for integrating layout design and flow network design. Proceedings of the 1990 Material Handling Research Colloquium, 43-58.
27. Reimann, M., Doerner, K., and Hartl, R.F., 2004. D-ants: savings based ants divide and conquer the vehicle routing problems. Computers & Operations Research, 31(4), 563-591.
28. Sherali, H. D., Fraticelli, B. M. P., and Meller, R. D., 2003. Enhance model formulations for optimal facility layout. Operations Research, 51(4), 629-644.
29. Socha, K., Sampels, M.,and Manfrin, M., 2003. Ant algorithms for the university course timetabling problem with regard to the state-of-the-art. In: Raidl G. et al., editors. Applications of evolutionary computing, proceedings of EvoWorkshops, 2611, 334-345.
30. Stützle, T., 1998. An ant approach to the flow shop problem. In: Proceedings of the 6th european congress on intelligent techniques & soft computing (EUFIT’98), 1560-1564.
31. Stützle, T., Dorigo, M., 1999. ACO algorithm for the quadratic assignment problem. Technical report IRIDIA, Universite′Libre de Bruxelles, 99–102.
32. Stützle, T., Hoors, H., 1997. Max-Min ant system and local search for the traveling salesman problem. IEEE Evolution Computation Conf., 309-314.
33. Stützle, T., Hoos, H., 2000. MAX-MIN ant system. Future Generation Computer Systems, 16, 889-914.
34. Tate, D. M., Smith, A. E., 1995. Unequal-area facility layout by genetic search. IIE Transactions, 27, 465-472.
35. Tong, X., 1991. SECOT: A sequential construction technique for facility design. PhD thesis, University of Pittsburgh.
36. van Camp, D.J., 1989. A nonlinear optimization approach for solving facility layout problem. PhD thesis, University of Toronto.
37. van Camp, D.J., Carter, M.W., Vannelli, A., 1992. A nonlinear optimization approach for solving facility layout problems. European Journal of Operational Research, 57 (2), 174-189.
38. Wang, C. T., 1999. Static and Dynamic Facility Layout Problem. PhD thesis, University of Michigan.
|