博碩士論文 985201011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:18.117.103.185
姓名 李宗庭(Tsung-Ting Li)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 強健正向系統的穩定度分析與控制器設計
(Stability Analysis and Controller Design for Robust Positive Systems)
相關論文
★ 小型化 GSM/GPRS 行動通訊模組之研究★ 語者辨識之研究
★ 應用投影法作受擾動奇異系統之強健性分析★ 利用支撐向量機模型改善對立假設特徵函數之語者確認研究
★ 結合高斯混合超級向量與微分核函數之 語者確認研究★ 敏捷移動粒子群最佳化方法
★ 改良式粒子群方法之無失真影像預測編碼應用★ 粒子群演算法應用於語者模型訓練與調適之研究
★ 粒子群演算法之語者確認系統★ 改良式梅爾倒頻譜係數混合多種語音特徵之研究
★ 利用語者特定背景模型之語者確認系統★ 智慧型遠端監控系統
★ 正向系統輸出回授之穩定度分析與控制器設計★ 混合式區間搜索粒子群演算法
★ 基於深度神經網路的手勢辨識研究★ 人體姿勢矯正項鍊配載影像辨識自動校準及手機接收警告系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文係研究正向系統之穩定性分析及穩定化控制設計,研究的範疇包含連續時間與離散時間兩大系統,系統中含有的區間跟凸形不確定量因子,是本文的主要探討之列。針對穩定性與正向性分析問題,而推導出新的充份與必要條件,基於此條件,搭配狀態迴授來設計控制器,便可應用於控制系統的穩定化設計上。利用前述之分析結果,配合線性歸劃方法來尋找控制器參數。最後以實際的正向系統為例,對此系統設計控制器,討論補償前與補償後系統性能的差異,經由模擬結果顯示,所設計的控制器是有效且適用的。
摘要(英) This thesis is concerned with stability and stabilization of interval and polytopic systems with the positivity constraints. Both continuous-time and discrete-time are discussed. For stability analysis and stabilization problems of those systems, we derive some new conditions. Then based on these conditions, a linear programming method is applied to design controllers. Several examples, including compartmental systems and Leslie systems are given to demonstrate the effectiveness and applicability of the proposed methods.
關鍵字(中) ★ 線性歸劃
★ 狀態迴授
★ 正向系統
關鍵字(英) ★ positive systems
★ linear programming
★ state feedback
論文目次 Contents I
List of Figures V
List of Tables VII
Chapter 1 Introductions 1
1.1 Motivations and Literature reviews 1
1.2 Organization 2
Chapter 2 Notations and Preliminaries 4
2.1 Notations 4
2.2 Positive Linear Systems 5
2.2.1 Continuous-time Positive Linear Systems 5
2.2.2 Discrete-time Positive Linear Systems 6
2.3 Metzler matrix 7
2.4 Asymptotically Stability 7
2.5 Lyapunov’s Direct Method 8
2.6 Summary 9
Chapter 3 Stability Analysis and Controller Design of Continuous-time Interval and Polytopic Systems under Positivity Constraint 10
3.1 Stability Analysis and Controller Design of Continuous-time Interval Systems under Positivity Constraint 10
3.1.1 Stability Analysis of Continuous-time Interval Linear Systems under Positivity Constraint 11
3.1.2 Controller Design of Continuous-time Interval Linear Systems under Positivity Constraint 14
3.2 Stability Analysis and Controller Design of Continuous-time Polytopic Systems under Positivity Constraint 17
3.2.1 Stability Analysis of Continuous-time Polytopic Linear Systems under Positivity Constraint 17
3.2.2 Controller Design of Continuous-time Polytopic Linear Systems under Positivity Constraint 20
3.3 Illustrative Examples 28
3.4 Summary 38
Chapter 4 Stability Analysis and Controller Design of Discrete-time Interval and Polytopic Systems under Positivity Constraint 39
4.1 Stability Analysis and Controller Design of Discrete-time Interval Systems under Positivity Constraint 39
4.1.1 Stability Analysis of Discrete-time Interval Linear Systems under Positivity Constraint 39
4.1.2 Controller Design of Discrete-time Interval Linear Systems under Positivity Constraint 43
4.2 Stability Analysis and Controller Design of Discrete-time Polytopic Systems under Positivity Constraint 46
4.2.1 Stability Analysis of Discrete-time Polytopic Linear Systems under Positivity Constraint 46
4.2.2 Controller Design of Discrete-time Polytopic Linear Systems under Positivity Constraint 50
4.3 Illustrative Examples 57
4.4 Summary 67
Chapter 5 Stabilization Problems on Compartmental Systems and Leslie Systems 68
5.1 Stabilization Problem on Compartmental Systems 68
5.1.1 Overview of Compartmental Systems 68
5.1.2 Stabilization of Compartmental Systems 69
5.2 Stabilization Problem on Leslie Systems 73
5.2.1 Overview of Leslie Systems 73
5.2.2 Stabilization of Leslie Systems 74
5.3 Summary 78
Chapter 6 Conclusions 79
References 80
Appendix 86
Publication List 103
參考文獻 [1] A. Berman, M. Neumann, and R. J. Stern, Nonnegative Matrices in Dynamic Systems, New York: Wiley, 1989.
[2] L. Farina and S. Rinaldi, Positive Linear System: Theory and Application, New York: Wiley, 2000.
[3] T. Kaczorek, 1-D and 2-D Systems, Berlin: Springer-Verlag, 2002.
[4] D. G. Luenberger, Introduction to Dynamic Systems, New York: Wiley, 1979.
[5] H. Minc, Nonnegative Matrices, New York: Wiley, 1987.
[6] P. H. Leslie, “On the use of matrices in certain population mathematics,” Biomerriko, vol. 33, pp. 183-212, 1945.
[7] P. D. Berk, J. R. Bloomer, and R. B. Howe, “Constitutional hepatic dysfunction (Gilbert’s syndrome),” The American Journal of Medicine, vol49, no. 3, pp.296-305, 1970.
[8] J. A. Jacquez, Compartmental Analysis in Biology and Medicine, Ann Arbor, MI: Univ. Michigan Press, 1985.
[9] H. Caswell, Matrix Population Model: Construction, Analysis and Interpretation, Sunderland, MA: Sinauer Assoc., 2001.
[10] L. Benvenuti and L. Farina, “Positive and compartmental systems,” IEEE Transactions on Automatic Control, vol.47, no.2, pp. 370-373, 2002.
[11] H. K. Khalil, Nonlinear Systems, third ed., Upper Saddle River, NJ: Prentice-Hall, Inc., 2002.
[12] M. Vidyasagar, Nonlinear Systems Analysis, New Jersey: Prentice-Hall, Inc., 2000.
[13] J. E. Slotine and W. Li, Applied Nonlinear Control, Englewood Cliffs, NJ: Prentice-Hall, Inc., 1991.
[14] T. Kaczorek, “Stabilization of positive linear systems,” Proceedings of the 37th IEEE Conference on Decision and Control, pp. 620-621, 1998.
[15] T. Kaczorek, “Stabilization of positive linear system by state-feedback,” Pomiary, Automatyka, Kontrola, vol. 3, pp. 2-5, 1999.
[16] P. D. Leenheer and D. Aeyels, “Stabilization of positive linear system,” Systems & Control Letters, vol. 44, no.4, pp. 259-271, 2001.
[17] H. Gao, J. Lam, C. Wang, and S. Xu, “Control for stability and positivity: Equivalent conditions and computation,” IEEE Transactions on Circuits and Systems Ⅱ, vol. 52, no. 9, pp. 540-544, Sep. 2005.
[18] M. A. Rami and F. Tadeo, “Controller synthesis for positive linear systems with bounded controls,” IEEE Transactions on Circuits and Systems Ⅱ, vol. 54, no. 2, pp. 151-155, 2007.
[19] B. Roszak and E. J. Davison, “Necessary and sufficient conditions for stabilizability of positive LTI systems,” Systems & Control Letters, vol. 58, pp. 474-481, 2009.
[20] Z. Shu, J. Lam, H. Gao, B. Du, and L. Wu, “Positive observers and dynamic output-feedback controllers for interval positive linear systems,” IEEE Transactions on Circuits and Systems Ⅰ, vol. 55, no. 10, pp. 3209-3222, Nov. 2008.
[21] P. Ling, J. Lam, and Z. Shu, “Positive observers for Positive interval linear discrete-time delay systems,” Proceedings of 48th IEEE Conference on Decision Control, pp. 6107-6112, Shanghai, P.R., China, 2009.
[22] X. Liu, “Stability analysis of switched positive systems: A switched linear copositive lyapunov function method,” IEEE Transactions on Circuits and Systems Ⅱ, vol. 56, no. 5, pp. 414-418, 2009.
[23] O. Mason and R. Shorten, “Some results on the stability of positive switched linear systems,” Proceedings of 43rd Conference on Decision and Control, 2004, pp. 4601-4606.
[24] O. Mason and R. Shorten, “The geometry of convex cones associated with the Lyapunov inequality and the common Lyapunov function problem,” Electronic Journal of Linear Algebra, vol. 12, pp. 42-63, 2005.
[25] O. Mason and R. Shorten, “Quadratic and copositive Lyapunov functions and the stability of positive switched linear systems,” Proceedings of 2007 American Control Conference, pp. 657-662, 2007.
[26] O. Mason and R. Shorten, “On linear copositive Lyapunov functions and the stability of switched positive linear systems,” IEEE Transactions on Automatic Control, vol. 52, no. 7, pp. 1346-1349, 2007.
[27] F. Knorn, O. Mason, and R. Shorten, “On Linear Co-positive Lyapunov Functions for Sets of Linear Positive Systems,” Automatica, vol. 45, no. 8, pp. 1943-1947, 2009.
[28] M. A. Rami, F. Tadeo, and A. Benzaouia, “Control of constrained positive discrete systems,” Proceedings of 2007 American Control Conference, pp. 5851-5856, New York, USA, 2007.
[29] M. A. Rami, and F. Tadeo, “Positive observation problem for linear discrete positive systems,” Proceedings of 45th IEEE Conference on Decision and Control, pp. 4729-4733, Athens, Greece, 2007.
[30] X. Liu, L. Wang, W. Yu, and S. Zhong, “Constrained control of positive discrete-time systems with delays,” IEEE Transactions on Circuits and Systems Ⅱ, vol. 55, no. 2, pp. 193-197, 2008.
[31] X. Liu, “Constrained control of positive systems with delays,” IEEE Transactions on Automatic Control, vol. 54, no. 7, pp. 1596-1600, 2009.
[32] M. A. Rami, F. Tadeo, and A. Benzaouia, “Control of constrained positive discrete systems,” Proceeding of 2007 American Control Conference, pp. 5851-5856, New York, USA, 2007.
[33] M. A. Rami, and F. Tadeo, “Positive observation problem for linear discrete positive systems,” Proceeding of 45th IEEE Conference on Decision and Control, pp. 4729-4733, Athens, Greece, 2007.
[34] L. Caccetta, L. R. Foulds, and V. G. Rumchev, “A positive linear discrete-time model of capacity planning and its controllability properties,” Mathematical and Computer Modelling, vol. 40, no. 1-2, pp. 217-226, 2004.
[35] M. Busłowicz and T. Kaczorek, “Robust stability of positive discrete-time interval systems with time-delays,” Bulletin of The Polish Academy of Sciences: Technical Sciences, vol.52, no.2, 2004.
[36] N. Dautrebande and G. Bastin, “Positive linear observers for positive linear systems,” Proceeding of 1999 Europe Control Conference, 1999.
[37] L. Benvenuti and L. Farina, “Eigenvalue regions for positive systems,” Systems & Control Letters, vol. 51, pp. 325-330, 2004.
[38] J. Back and A. Astolfi, “Positive linear observers for positive linear systems: A Sylvester equation approach,” Proceeding of 2006 American Control Conference, pp. 4037-4042, Minneapolis, Minnesota, USA, 2006.
[39] J. Feng, J. Lam, P. Li, and Z. Shu, “Decay rate constrained stabilization of positive systems using static output feedback,” International Journal of Robust and Nonlinear Control, vol. 83, no. 3, pp. 575-584, 2010.
[40] T. Coleman, M. Branch, and A. Grace, Optimization Toolbox for Use with Matlab, Natick, MA: The Math Works Inc., 1999.
指導教授 莊堯棠(Yau-Tang Juang) 審核日期 2011-7-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明