參考文獻 |
參考文獻
[1] T. Takagahara et al., “Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials”, Phys. Rev. B, Vol. 46, p. 15578, 1992.
[2] J. See et al., “Comparison between a sp3d5 tight-binding and an effective-mass description of silicon quantum dots”, Phys. Rev. B, Vol. 66, p. 193307, 2002.
[3] M. Saitoh et al., “Room-temperature operation of highly functional single-electron transistor logic based on quantum mechanical effect in ultra-small silicon dot”, IEEE IEDM Tech. Dig., p. 31.5.1, 2003.
[4] G. L. Chen et al., “Tunneling spectroscopy of germanium quantum-dot in single-hole transistors with self-aligned electrodes”, Nanotechnology, Vol. 18, p. 475402, 2007.
[5] O. Astafiev et al., “Single artificial-atom lasing”, Nature, Vol. 449, p. 588, 2007.
[6] P. Bhattacharya et al., “Characteristics of a tunneling quantum-dot infrared photodetector operating at room temperature”, Appl. Phys. Lett., Vol. 86, p. 191106, 2005.
[7] M. C. Beard et al., “Multiple exciton generation in colloidal Silicon nanocrystals”, Nano Lett., Vol. 7, p. 2506, 2007.
[8] S. S. Tseng et al., “Photoresponses in poly-Si phototransistors incorporating germanium quantum dots in the gate dielectrics”, Appl. Phys. Lett., Vol. 93, p. 191112, 2008.
[9] J. H. Chen et al., “Nonvolatile flash memory device using Ge nanocrystals embedded in HfAlO high-κ tunneling and control oxides: device fabrication and electrical performance”, Appl. Phys. Lett., Vol. 93, p. 191112, 2008.
[10] M. A. Green, “Third generation photovoltaics-solar cells for 2020 and beyond”, Physica E, Vol. 14, p. 65, 2002.
[11] S. Suraprapapich et al., “Quantum dot integration in heterostructure solar cells”, Solar Energy Materials & Solar Cells, Vol. 90, p. 2968, 2006.
[12] B. Yang et al., “Measurements of anisotropic thermoelectric properties in superlattices”, Appl. Phys. Lett. Vol. 81, p. 3588, 2002.
[13] T. M. Tritt, D. M. Rowe (Eds), Thermoelectrics handbook: macro to nano., ch23, CRC Press. New York, 2006.
[14] H. Yusuf et al., “A hierarchical self-assembly route to three-dimensional polymer-quantum dot photonic arrays”, Langmuir, Vol. 23, p. 5251, 2007.
[15] D. Grützmacher et al., “Three-dimensional Si/Ge quantum dot crystals”, Nano Lett., Vol. 7, p. 3150, 2007.
[16] X. Qian et al., “Uniform InGaAs quantum dot arrays fabricated using nanosphere lithography”, Appl. Phys. Lett., Vol. 93, p. 231907, 2008.
[17] K Das et al., “Growth of Ge islands and nanocrystals using RF magnetron sputtering and their characterization”, Nanotechnology, Vol. 18, p. 175301, 2007.
[18] C. Y. Chien et al., “Formation of Ge quantum dots array in layer-cake technique for advanced photovoltaics”, Nanotechnology, Vol. 21, p. 505201, 2010.
[19] W. Shockley et al., “Detailed balance limit of efficiency of p-n junction solar cells”, J. Appl. Phys., Vol. 32, p. 510, 1961.
[20] A. J. Nozik, “Quantum dot solar cells”, Physica E, Vol. 14, p. 115, 2002.
[21] K. Laouthaiwattana et al., “Optimization of stacking high-density quantum dot molecules for photovoltaic effect”, Solar Energy Materials & Solar Cells, Vol. 93, p. 746, 2009.
[22] A. Alguno et al., “Enhanced quantum efficiency of solar cells with self-assembled Ge dots stacked in multilayer structure”, Appl. Phys. Lett., Vol. 83, p. 1258, 2003.
[23] A. Alguno et al., “Effects of spacer thickness on quantum efficiency of the solar cells with embedded Ge islands in the intrinsic layer”, Appl. Phys. Lett., Vol. 84, p. 2802, 2004.
[24] A. Alguno et al., “Influence of stacked Ge islands on the dark current–voltage characteristics and the conversion efficiency of the solar cells”, Thin Solid Films, Vol. 508, p. 402, 2006.
[25] A. Khitun et al., “In-plane lattice thermal conductivity of a quantum-dot superlattice”, J. Appl. Phys., Vol. 88, p. 696, 2000.
[26] 佳霖科技公司,「STS ICP ETCHER教學訓練資料」。
[27] 邱燦賓等編著,「電子束微影技術」,科學發展月刊,第二十八卷第六期,423~434頁,89年3月。
[28] A. V. Kolobov, “Raman scattering from Ge nanostructures grown on Si substrates: Power and limitations”, J. Appl. Phys., Vol. 87, p. 2926, 2000.
[29] J. L. Liu et al., “Optical and acoustic phonon modes in self-organized Ge quantum dot superlattices”, Appl. Phys. Lett., Vol. 76, p. 586, 2000.
[30] V. I. Mashanov et al., “Raman study of Si–Ge intermixing in Ge quantum rings and dots”, Physica E, Vol. 28, p. 531, 2005.
[31] J. L. Liu et al., “Optical phonons in self-assembled Ge quantum dot superlattices: Strain relaxation effects”, J. Appl. Phys., Vol. 92, p. 6804, 2002.
[32] W. L. Warren et al., “Structural identification of the silicon and nitrogen dangling‐bond centers in amorphous silicon nitride”, J. Appl. Phys., Vol. 70, p. 346, 1991.
[33] H. H. Silvestri et al., “Diffusion of silicon in crystalline germanium”, Semicond. Sci. Technol., Vol. 21, p. 758, 2006.
[34] 張宇瑞,「鍺量子點在氮化矽中的形成機制與鍺量子點可見光光二極體的研製」,國立中央大學,碩士論文,2011。
[35] J. D. Plummer et al., Silicon VLSI technology., Prentice Hall, 2001.
[36] B. Yu et al., “Nanotechnology: Role in emerging nanoelectronics”, Solid-State Electronics, Vol. 50, p. 536, 2006.
|