博碩士論文 985201066 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:3.15.31.27
姓名 陳柏翰(Po-Han Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 儲存環境因子對於含烷基的低聚噻吩有機薄膜電晶體偏壓應力的可靠度測試與評估探討
(Study of environmental factors effect on bias-temperature instability of alkyl-substituted oligothiophene organic thin film transistors)
相關論文
★ 高效能矽鍺互補型電晶體之研製★ 高速低功率P型矽鍺金氧半電晶體之研究
★ 應變型矽鍺通道金氧半電晶體之研製★ 金屬矽化物薄膜與矽/矽鍺界面反應 之研究
★ 矽鍺異質源/汲極結構與pn二極體之研製★ 矽鍺/矽異質接面動態啓始電壓金氧半電晶體之研製
★ 應用於單電子電晶體之矽/鍺量子點研製★ 矽鍺/矽異質接面動態臨界電壓電晶體及矽鍺源/汲極結構之研製
★ 選擇性氧化複晶矽鍺形成鍺量子點的光特性與光二極體研製★ 選擇性氧化複晶矽鍺形成鍺量子點及其在金氧半浮點電容之應用
★ 鍺量子點共振穿隧二極體與電晶體之關鍵製程模組開發與元件特性★ 自對準矽奈米線金氧半場效電晶體之研製
★ 鍺浮點記憶體之研製★ 利用選擇性氧化單晶矽鍺形成鍺量子點之物性及電性分析
★ 具有自我對準電極鍺量子點單電洞電晶體之製作與物理特性研究★ 具有自我對準下閘電極鍺量子點單電洞電晶體之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 雖然有機薄膜元件的技術日益成熟,但是有機薄膜材料對於環境因子,如 : 溫度、濕度及儲存環境,非常的敏感。為了瞭解有機薄膜電晶體未來在可撓式顯示器、電子書或感測器等應用的可能性,本論文特別探討儲存環境因子對於該元件的可靠度及熱穩定度的影響。
本文針對含烷基的低聚噻吩的裸晶有機薄膜電晶體進行了溫度相依與時間相依的電性量測。發現隨著溫度的上升,元件臨限電壓會一直往負偏壓方向移動,但奇特的是次臨限斜率及開啟電流卻隨著溫度的上升而獲得改善。此外,在閘極負偏壓應力測試中當溫度由300 K提升到330 K時,元件的臨限電壓會持續地往負偏壓方向移動。但是,當測試溫度為340 K時,發現臨限電壓向負偏壓方向移動的行為會出現逆轉的現象,並且隨著溫度的上升此逆轉現象逐漸減緩。藉由熱差分析儀的探討發現含烷基的低聚噻吩在加熱或冷卻的過程中,分別會於313 K或309 K出現相轉變。推測上述奇特的電特性可能與材料的相轉變相關。
量測結果顯示該材料的相轉變有助於改善有機薄膜電晶體在高溫操作環境下,閘極負偏壓應力測試所導致臨限電壓不穩定的現象。此外,利用高溫( 370 K )退火不僅可以減緩閘極負偏壓應力導致臨限電壓不穩的現象,還可以回復水氣所引起的元件衰退。
本論文也發現到當含烷基的低聚噻吩有機薄膜電晶體經護層覆蓋後,水氣所引起的元件衰退較難利用高溫( 370 K )退火回復。經護層保護的元件對於負閘極偏壓應力有較佳的抵抗能力,並且在高溫( 370 K )進行的偏壓應力測試也不會出現反向的臨限電壓移動,但是經過濕度儲存後將會導致電晶體在偏壓應力的作用下臨限電壓嚴重地被影響。
摘要(英) Environmental factors such as temperature, humidity, and storage ambience have profound impact on organic thin film transistors (OTFTs). Thus it is important to verify the reliability and thermal stability of OTFTs for future applications in flexible large-area display, electric paper, and sensors.
This thesis investigates temperature-dependent and time-dependent current-voltage characteristics of alkyl-substituted oligothiophene OTFTs. The investigations indicate that, as temperature increases, a negative threshold voltage shift ( ?Vth ) with a surprising subthreshold slope and drive current improvement. In addition, a negative gate bias stress makes a monotonic ?Vth with stress time in the direction of stressed gate bias at T = 300-330 K. Notably as the stress temperature reaches 340 K, a reverse ?Vth motion with stress time emerges, and as the temperature increases this reverse ?Vth slows down. We performed successive differential scanning calorimetry, to study the intrinsic thermal property of the alkyl-substituted oligothiophene semiconductor in heating and cooling runs with results exhibiting a peak near 313 K and 309 K, respectively.
The phase transition of the alkyl-substituted oligothiophene improves the gate-bias stress induced threshold voltage instability at high temperatures. Furthermore, the bias stress induced threshold voltage instability and humidity effect could be easily recovered by a post-stress thermal anneal at 370 K in vacuum.
The study also shows that humidity effect in the passivated alkyl-substituted oligothiophene OTFTs couldn’t be easily recovered by a thermal anneal at 370 K in vacuum. The passivated alkyl-substituted oligothiophene OTFTs have performed better on the bias stress induced threshold voltage instability, and don’t have a reverse ?Vth motion with stress time emerging in high temperatures, but the bias stress induce threshold voltage instability will deteriorate after pre-storage of high humidity ambience.
關鍵字(中) ★ 偏壓溫度不穩定
★ 儲存環境因子
★ 有機薄膜電晶體
關鍵字(英) ★ organic thin film transistors
★ environmental factors effect
★ bias-temperature instability
論文目次 中文摘要 I
英文摘要 III
致謝 V
目錄 VI
圖目錄 IX
表目錄 XII
第一章 簡介與研動機 1
1-1 前言 1
1-2 有機薄膜電晶體發展 2
1-3 元件可靠度測試簡介 3
1-4 研究動機 5
第二章 環境因子對於含烷基的低聚噻吩有機薄膜電晶體影響 10
2-1 元件的結構與製程 10
2-2 溫度相依特性分析 10
2-3 含烷基的低聚噻吩有機半導體材料熱特性 12
2-4 儲存於大氣環境中的時間相依分析與高溫熱退火效應 13
2-5 儲存於濕度環境中元件電特性衰退分析 14
2-6 結論 16
第三章 偏壓應力對於含烷基的低聚噻吩有機薄膜電晶體電特性退化分析 21
3-1 前言 21
3-2 偏壓溫度不穩定簡介 21
3-3 真空環境下的偏壓溫度不穩定分析 23
3-4 溫濕儲存後真空環境變溫閘極偏壓應力測試 26
3-5 結論 29
第四章 護層覆蓋含烷基的低聚噻吩有機薄膜電晶體電特性分析 39
4-1 前言 39
4-2 護層覆蓋含烷基的低聚噻吩有機薄膜電晶體熱退火分析 39
4-3 真空環境下的偏壓溫度不穩定分析 40
4-4 高濕儲存後真空環境室溫閘極偏壓應力測試 41
4-5 結論 42
第五章 總結與未來展望 48
參考文獻 50
參考文獻 [1] 戴亞翔,TFT-LCD面板的驅動與設計,五南圖書出版公司,2008。
[2] J. Heeger, Alan G. MacDiarmid, and H. Shirakawa, “Electrical Conductivity in Doped Polyacetylene,” Phy. Rev. Lett., vol. 39, no. 17, pp.1098, 1977.
[3] A. Tsumura, H. Koezuka, and T. ando, “Macromolecular electronic device: Field-effect transistor with a polythiophene thin film,” Appl. Phys. Lett,. vol. 49, no. 18, pp. 1210, 1986.
[4] Christos D. Dimitrakopoulos, and Patrick R. L. Malenfant, “Organic Thin Film Transistors for Large Area Electronics,” Adv. Mater., vol. 14, no. 2, pp.99, 2002.
[5] Christos D. Dimitrakopoulos, and D. J. Mascaro, “Organic thin-film transistors: A review of recent advances” IBM J. Res. & Dev., vol. 45, no. 1, pp. 11, 2001.
[6] J. H. Schon, S. Berg, CH. Kloc, and B. Batlogg, ”Ambipolar PENTACENE Field Effect Transistors and Inverters,” Science, vol. 287, no. 5455, pp. 1022, 2000.
[7] S. Okur, F. Yakuphanoglu, and E. Stathatos, “High-mobility pentacene phototransistor with nanostructured SiO2 gate dielectric synthesized by sol-gel method,” Microelectron. Eng., vol. 87, no. 4, pp. 635, 2010.
[8] Ping Liu, Yiliang Wu, Hualong Pan, Beng S. Ong, and Shiping Zhu, “High-Performance Polythiophene Thin-Film Transistors Processed with Environmentally Benign Solvent,” Macromolecules, vol. 43, no.15, pp. 6368, 2010.
[9] B. H. Hamadani, and D. J. Gundlach, “Undoped polythiophene field-effect transistors with of 1 cm2V-1s-1,” Appl. Phys. Lett,. vol. 91, no. 24, pp. 243512, 2010.
[10] Dawen Li, Evert-Jan Borkent, Robert Nortup, Hyunsik Moon, Howard Katz, and Zhenan Bao, “Humidity effect on electrical performance of organic thin-film transistors,” Appl. Phys. Lett., vol. 86, no. 4, pp. 042105, 2005.
[11] Amanda R. Murphy and Jean M. J. Frechet, “Organic Semiconducting Oligomers for Use in Thin Film Transistors,” Chem. Rev., vol. 107, pp.1066, 2007.
[12] Marcus Halik, Hagen Klauk, Ute Zschieschang, Giinter Schmid, Sergei Pomomarenko, Stephan Kirchmeyer, and Werner Weber, “Relationship Between Molecular Structure and Electrical Performance of Oligothiophene Organic Thin Film Transistors,” Adv. Mater., vol. 15, No. 11, pp. 917, 2003.
[13] 傅寬裕,半導體IC產品可靠度統計物理與工程,五南圖書出版公司,2009。
[14] Jongseung Kim, Jaehoon Park, Hyundoo Hwang, and Jan-Hoon Kim, “Effect of Moisture on Pentacene Thin-Film Transistors with Polyvinylpyrrolidone Gate Insulator,” KLCC, vol. 11, 2009.
[15] M. N. Berberan-Santos, E. N. Bodunov, B. Valeur, “Mathematical functions for the analysis of luminescence decays with underlying distributions 1. Kohlrausch decay function (stretched exponential),” Chem. Phys., vol. 315, pp. 171, 2005.
[16] Simon G. J. Mathijssen, Michael Colle, Henrique Gomes, Edsger C. P. Smits, Bert de Boer, Iain McCulloch, Peter A. Bobbert, and Dago M. de leeuw, “Dynamics of Threshold Voltahe Shifts in Organic and Amorphous Silicon Field-Effect transistors,” Adv. Mater., vol. 19, pp. 2785, 2007.
[17] W. B Jackson, J. M. Marshall, and M. D. Moyer, “Role of hydrogen in the formation of metastable defects in hydrogenated amorphous silicon,” Phys. Rev. B, vol. 39, no. 2, pp. 1164, 1989.
[18] Tse Nga Ng, Jurgen H. Daniel, Sanjiv Sambandan, Ana-Claudia Arias, Michael L. Chabinyc, and Robert A. Street, “Gate bias stress effects due to polymer gate dielectrics in organic tjin-film transistors,” J. Appl. Phys., vol. 103, no. 4, pp. 044506, 2008.
[19] Gong Gu, Michael G. Kane, and Siun-Chuon Mau, “Reversible memory effects and acceptor states in pentacene-based organic thin-film transistors,” J. Appl. Phys., vol. 101, no. 1, pp. 014504, 2007.
[20] Ute Zschieschang, R. Thomas Weitz, Klaus Kern, and Hagen Klauk, “Bias stress effect in low-voltage organic thin –film transistors” Appl. Phys. A, vol. 95, pp. 139-145, 2009.
[21] M. Matters, D. de leeuw, P. Herwig, and A. Brown, “Bias-stress induced instability of organic thin-film transistors,” synth. Met., vol. 102, pp. 998, 1999.
[22] H. Gomes, P. Stallinga, F. Dinelli, M. Murgia, F. Biscarini, D. de Leeuw, T. Muck, J. Geurts, L. Molenkamp, and V. Wagner, ”Bias-induced threshold voltage shift in thin-film organic transistors,” Appl. Phys. Lett., vol.93, no. 16, pp. 3184, 2004.
[23] J. Yuan, J. Zhang, J. Wang, D. Yan,and W. Xu, “Study on the instability of organic field-effect transistors based on fluorinated copper phthalocyanine,” Thin. Solid. Films., vol.450, pp. 316-319, 2004.
[24] D. Lang, X. Chi, T. Siegrist, and A. Ramirez, “Bias-Dependent Generation and Quenching of Defect in Pentacene,” Phys. Rev. Lett., vol. 93, pp. 076601, Aug. 2004.
[25] S. Deane, R. Wehrspohn, and M. Powell, “Unification of the time and temperature dependence of dangling-bond-defect creation and removal in amorphous-silicon thin-film transistors,” Phys. Rev. B: Condens. Matter Mater. Phys., vol. 58, no. 19, pp. 12625, 1998.
[26] S. J. Zilker, C. Detcheverry, E. Cantatore, and D. M. de leeuw, “Bias stress in organic thin-film transistors and logic gate,” Appl. Phys. Lett., vol. 77, no. 8, pp. 1124, 2001.
指導教授 李佩雯(Pei-Wen Li) 審核日期 2011-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明