博碩士論文 985201085 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.145.59.244
姓名 吳建鋒(Jian-fong Wu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 以多重耦合線實現新式多功能微波元件
(New Designs of Multi-Functional Microwave Component using Multicoupled Line)
相關論文
★ 用於行動上網裝置之智慧型陣列天線★ 吸收式帶止濾波器之研製
★ 一維及二維切換式波束掃描陣列天線★ 寬頻微型化六埠網路接收機
★ 具有良好選擇度的寬頻吸收式帶止濾波器★ 微小化吸收式帶止濾波器之通帶改善
★ 共面波導帶通濾波器之研製★ 微帶耦合線帶通濾波器與雙工器研製
★ 宇宙微波背景輻射陣列望遠鏡接收機 之校準信號源研製★ K-Band及Q-Band毫米波帶通濾波器設計
★ 薄膜製程射頻被動元件設計★ 微波帶通低雜訊放大器設計
★ 積體式微波帶通濾波器之研製★ 應用於高位元率無線傳輸系統之V頻段漸進式開槽天線陣列
★ 以多重耦合線實現多功能帶通濾波器★ 以單刀雙擲帶通濾波器實現高整合度射頻前端收發系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文以多重耦合線為核心,並使用負載電容的變化調整頻率響應特性,藉此實現
新式多功能微波元件,以提升將射頻收發機前端電路整合度。
首先,本論文提出五線式多重耦合線實現可切換式帶通濾波器,利用外接電晶體達
到切換功能,並以砷化鎵積體電路實現,將單刀雙擲切換器與帶通濾波器整合於單一元
件中,電路面積僅為0.063λg×0.043λg。其次,運用多重耦合線設計平衡至非平衡轉換
功能帶通濾波器,進一步將單刀雙擲、帶通濾波器與平衡至非平衡轉換器整合,並以砷
化鎵積體電路實現,電路面積僅為0.094λg×0.047λg。最後,運用濾波器可自由設計匹
配阻抗之特性,利用濾波器設計低雜訊放大器的輸入端與輸出端匹配網路,有效地將單
刀單擲切換器、帶通濾波器、低雜訊放大器、平衡至非平衡轉換器整合至單一元件內,
不僅縮小電路面積,也減小各級分開設計串接時所造成不匹配之損耗。
本論文所提出的新式多功能微波元件,以濾波器為基礎,並運用多重耦合線進一步
延伸整合射頻前端多種功能元件,具有簡潔的設計流程與公式,可有效的縮小射頻收發
機面積、成本與設計時間。
摘要(英) In this study, new multi-functional microwave components are achieved based on
multicoupled-line with loaded capacitors to enhance integration of RF front-end circuit.
First of all, five-line coupled-line is used to realize switchable bandpass filter. Besides
using external connected transistors to obtain switch capability, the circuits are implemented
by using the GaAs pHEMT process to achieve very compact size. In this way,
single-pole-double-throw (SPDT) switch and bandpass filter are combined into single element
whose size is only 0.063λg×0.043λg. Second, we use mutlicoupled lines to design balun
bandpass filter integrated with SPDT switch. The proposed circuit is also implemented in
GaAs pHEMT process and the circuit size is only 0.094λg×0.047λg. Finally, use the
impedance matching capability of filter to design Low Noise Amplifier (LNA) whose input
and output matching network can effectively integrate single-pole-single-throw (SPST) switch,
bandpass filter, and balun. In this way, the circuit size can be largely minimized and the
mismatch loss resulted from cascade connection can also be reduced.
The proposed multifunctional microwave component is based on conventional microwave
filter design, and mutlicoupled lines are used to achieve the integration of multiple function
blacks in a RF front-end. Simple design procedure and equations are presented in this study.
Hence, RF transceiver size and cost can be minimized, and shorten designing time can be
achieved.
關鍵字(中) ★ 多重耦合線
★ 單刀雙擲帶通濾波器
★ 低雜訊放大器
關鍵字(英) ★ multicoupled line
★ SPDT bandpass filter
★ LNA
論文目次 論文摘要 ..................................................................................................................................... I
Abstract ...................................................................................................................................... II
致謝 .......................................................................................................................................... III
目錄 .......................................................................................................................................... IV
圖目錄 ....................................................................................................................................... V
表目錄 .................................................................................................................................... VII
第一章 緒論 ............................................................................................................................ 1
1.1 研究動機 ...................................................................................................................... 1
1.2 文獻回顧 ...................................................................................................................... 2
1.3 章節介紹 ...................................................................................................................... 5
第二章 具單刀雙擲功能之多重耦合線帶通濾波器 ............................................................ 6
2.1 電路架構與設計理論 .................................................................................................. 6
2.2 單刀雙擲帶通濾波器設計與實做驗證 .................................................................... 13
2.3 問題探討與重新設計 ................................................................................................ 20
2.4 結論與文獻比較 ........................................................................................................ 25
第三章 具平衡至非平衡轉換器之單刀雙擲帶通濾波器 .................................................. 27
3.1 電路架構與設計理論 ................................................................................................ 27
3.2 單刀雙擲帶通平衡至非平衡濾波器設計與實做驗證 ............................................ 31
3.3 問題探討 .................................................................................................................... 39
3.4 結論 ............................................................................................................................ 43
第四章 單端至平衡輸出轉換功能之單刀單擲帶通低雜訊放大器 .................................. 44
4.1 單端至平衡輸出之帶通低雜訊放大器原理 ............................................................ 44
4.2 單端至平衡輸出之單刀單擲帶通低雜訊放大器設計與實做驗證 ........................ 50
4.2.1 單端至平衡輸出之單刀單擲帶通低雜訊放大器設計 ................................. 50
4.2.2 單端至平衡輸出之單刀單擲帶通低雜訊放大器實作驗證 ......................... 57
4.3 結論與文獻比較 ....................................................................................................... 63
第五章 結論 .......................................................................................................................... 67
參考文獻 .................................................................................................................................. 69
參考文獻 [1] Chia-Shih Cheng, Chien-Cheng Wei and Rong-Jyi Yang, Hsien-Chin Chiu, “A high isolation 0.15-μm depletion-mode pHEMT SPDT switch using field-plate technology”,
in Asia-Pacific Microwave Conference Proceedings. pp.759-762, 2007.
[2] C. Y. Ou, C.Y. Hsu, H. R. Lin, H. R. Chuang and T. H. Huang, “A high-isolation high-linearity 24-GHz CMOS T/R switch in the 0.18-μm CMOS process,“ in European Microwave Conference, pp. 250-253, Sep. 2009.
[3] J. Kim, W. Ko ,S.H. Kim, J. Jeong and Y. Kwon, “A high-performance 40-85 GHz MMIC SPDT switch using FET-integrated transmission line structure”, IEEE Microwave
and Wireless Components Letters, vol 13 ,pp. 505-507, Dec. 2003.
[4] Y. Tsukahara, H. Amasuga, S. Goto, T. Oku and T. Ishikawa , “60GHz high isolation SPDT MMIC switches using shunt pHEMT resonator , ” IEEE MTT-S Int. Microwave Symp. Dig., pp. 1541-1544, Jun. 2008.
[5] W. H. Tu, “Switchable microstrip bandpass filters with reconfigurable frequency responses,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 1488-1491, May 2010.
[6] Y. S. Lin, P. Y. Chang and Y. S. Hsieh, “Compact electronically switchable parallel-coupled microstrip bandpass filter with wide stopband,” IEEE Microw. Wireless
Compon., vol. 18, no. 4, pp. 254-256, Apr. 2008.
[7] Y.-S. Lin, P.-C. Wang, C.-W. You and P.-Y. Chang, “New designs of bandpass diplexer and switchplexer based on parallel-coupled bandpass filters,” IEEE Trans. Microwave Theory Tech., vol. 58, no. 12, pp. 3417-3426, Dec. 2010.
[8] S. F. Chao, C. H. Wu, and Z. M. Tsai, H. Wang and C. H. Chen, “Electronically
switchable bandpass filters using loaded stepped-impedance resonators,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, pp. 4193-4201, Dec. 2006.
[9] K.-H Pao, C.-Y. Hsu, H.-R. Chuang, C.-L Lu and C.-Y Chen, "A 3-10GHz broadband CMOS T/R switch for UWB applications" in European Microwave Conference, pp.452-455, Sep. 2006.
[10] S.-F. Chang, J.-L. Chen, H.-W. Kuo and H.-Z. Hsu , “A filter synthesis method applied to millimeter-wave distributed switch design,” in European Microwave Conference, pp.1295-1298, Oct. 2003.
[11] Z. M. Tsai, Y.S. Jiang, J. Lee, K.Y. Lin and H. Wang “Analysis and design of bandpass single-pole-double-throw FET filter-integrated switches” IEEE Trans. on Microwave Theory and Tech., vol. 55, no. 8, pp. 1601-1610, Aug. 2007.
[12] J. Lee, R.-B. Lai, K.-Y. Lin, C.-C. Chiong and H. Wang, “A Q-band low loss reduced-size filter-integrated SPDT switch using 0.15μm- MHEMT technology,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 551–554, Jun. 2008.
[13] W.H. Liao, C. S. Chen and Y. S. Lin, “ Single-chip integration of electronically switchable bandpass filter for 3.5GHz WiMAX application,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 1368-1371 May 2010.
[14] Guan, X., Jin, Y. and Nguyen, “Design of high-performance compact CMOS distributed amplifiers with on-chip patterned ground shield inductors, ” Electronics Letters, vol.45,no. 15,pp. 791-792, July 2009.
[15] Sabine Long, Laurent Escotte, Jacques Graffeuill, Philippe Fellon and Daniel Roques,“Ka-band coplanar low-noise amplifier design with power PHEMTs,” in European
Microwave Conference, pp. 17 - 20, Oct. 2003.
[16] D. Shaeffer and T. Lee, “A 1.5 V, 1.5 GHz CMOS low noise amplifier,” IEEE J.Solid-State Circuits, vol. 32, pp.745 - 759 , May 1997.
[17] Sheng-Ming Luo, Shou-Hsien Weng, Yan-Liang Ye, Chi-Hsien Lin, Chia-Ning Chung and Hong-Yeh Chang, “24-GHz MMIC development using 0.15-μm GaAs PHEMT process for automotive radar applications,” in Asia Pacific Microwave Conference Proceedings, pp. 1-4, Dec. 2008.
[18] S.-C. Shin, M.-D. Tsai, R.-C. Liu, K.-Y. Lin and H. Wang, “A 24-GHz 3.9-dB NF low-noise amplifier using 0.18 μm CMOS technology”, IEEE Microwave Wireless Component Letter, vol. 15, no. 7, pp. 448-450, July 2005.
[19] To-Po Wang, “A Low-voltage low-power K-band CMOS LNA using DC-current-path split technology,” IEEE Microw. Wireless Compon., vol. 20, no. 9, pp. 519-521, Sept.2010.
[20] Andreas Axholt, Waqas Ahmad and Henrik Sjöland, “A 90nm CMOS UWB LNA,”IEEE Norchip, pp. 25-28. Nov. 2008.
[21] P. Pieters , K. Vaesen , W. Diels , G. Carchon , S. Brebels , W. D. Raedt , E. Beyne and R. P. Mertens “High-Q integrated spiral inductors for high performance wireless
front-end systems,” in Proc. IEEE Radio Wireless Conf., pp.251-254, Sep. 2000.
[22] J.-L. Chen, S.-F. Chang, C.-C. Liu and H.-W. Kuo, “Design of a 20-to-40 GHz bandpass MMIC amplifier,” in IEEE MTT-S Int. Microw. Symp. Dig., pp. 1275–1278, Jun. 2003.
[23] A. Ismail and A. Abidi, “A 3-10-GHz low-noise amplifier with wideband LC-ladder matching network,” IEEE J. Solid-State Circuits, vol. 39, pp. 2269-2277,Dec. 2004.
[24] M. Yang, M. Ha, Y. Park and Y. Eo, “A 3–10 GHz CMOS low-noise amplifier using wire bond inductors,” Microwave and Optocal Technology Letters, vol.51, no. 2, pp. 414-416, Feb.2009.
[25] Rezaul Hasan, S.M. “Analysis and design of a multistage CMOS band-pass low-noise preamplifier for ultrawideband RF receiver,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 18, pp. 638-651 , Apr. 2010.
[26] C.-L. Tsai and Y.-S. Lin, “Analysis and design of new single-to-balanced multi-coupled line bandpass filters using low temperature co-fired ceramic technology,” IEEE Trans.Microwave Theory Tech., vol. 56, no. 12, pp. 2902-2912, Dec. 2008.
[27] 鍾育軒, “微波帶通低雜訊放大器設計, ” 碩士論文, 國立中央大學, June 2009.
[28] R. Sato and E.G. Cristal, “Simplified analysis of coupled tranmission-line networls,”IEEE Trans. Microw. Theory Tech., vol. 18, no. 3, pp. 122-131, Mar. 1970.
[29] J.-S. Hong and M. J. Lancaster, Microstrip Filter for RF/Microwave Application. New York: Wiley, 2001.
[30] R. E. Lehmann and D. D. Heston, “X-Band monolithic series feedback LNA,” IEEE Trans. Microwave Theory Tech., vol. 33, no. 12, pp. 1560-1566, Dec. 1985.
[31] C.-W. Tang and S.-F You, “Design methodologies of LTCC bandpass filters, diplexer,and triplexer with transmission zeros,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 2, pp. 717 – 723, Feb 2006.
[32] 王品傑, “以單刀雙擲帶通濾波器實現高整合度射頻前端收發系統,” 碩士論文, 國立中央大學, June 2010.
[33] “TDK/product catalog/RF components/multilayer bandpass filters (balance output type),” TDK Corporation, Tokyo, Japan, 2010. [Online]. Available: http://www.tdk.com/, Device Part No. DEA202450BT-7112E1.
[34] “Sosgin/filters/multilayered dielectric balanced filters,” Soshin Electric Company Ltd., Tokyo, Japan, 2010. [Online]. Available: http://www.soshin-ele.com/product/index/,Device Part No. DBF81H904.
[35] van der Heijden, E., H. Veenstra, D. Hartskeerl, M. Notten and D. v. Goor, “Low noise amplifier with integrated balun for 24GHz car radar,” in Proc.SiRF, pp. 78-81,Jan. 2008.
[36] Welch B., Kornegay K.T. and Park H.-M., Laskar J., “A 20 GHz lownoise amplifier with active balun in a 0.25 mm SiGe BICMOS technology,” IEEE J. Solid-State Circuits, vol.40, no. 10, pp. 2092–2097, Oct. 2005.
[37] Huang, G., Kim, S.-K. and Kim, B.-S., “A wideband LNA with active balun for DVB-T application,” IEEE Int. Symp. on Circuits and Systems, pp. 421–424, May 2009.
[38] S. C. Blaakmeer, E. A. M. Klumperink, D. M. W. Leenaerts and B. Nauta “Wideband balun-LNA with simultaneous output balancing, noise-canceling and distortioncanceling,”IEEE J.
指導教授 林祐生(Yo-Shen Lin) 審核日期 2011-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明