參考文獻 |
1. Yang, H.; Carter, R. G., Proline Sulfonamide-Based Organocatalysis: Better Late than Never. Synlett 2010, (19), 2827-2838.
2. Corey, E. J., Enantioselective Catalysis Based on Cationic Oxazaborolidines. Angew. Chem. Int. Ed. 2009, 48 (12), 2100-2117.
3. Corey, E. J.; Helal, C. J., Reduction of Carbonyl Compounds with Chiral Oxazaborolidine Catalysts: A New Paradigm for Enantioselective Catalysis and a Powerful New Synthetic Method. Angew. Chem. Int. Ed. 1998, 37 (15), 1986-2012.
4. Dalko, P. I.; Moisan, L., In the Golden Age of Organocatalysis. Angew. Chem. Int. Ed. 2004, 43 (39), 5138-5175.
5. List, B., Proline-catalyzed asymmetric reactions. Tetrahedron 2002, 58 (28), 5573-5590.
6. Shiina, I. K., Katsuhiko; Kuramoto, Yu-suke Enantioselective Alkylation of Aldehydes with Diethylzinc Using a New Catalyst System, ((R)-Thiolan-2-yl) diphenylmethanol and Metal Alkoxides. Chem. Lett. 2002, 164-165.
7. Wrobel, J. T.; Hejchman, E., Spiro Derivatives of Tetrahydrothiophene- Synthesis of the Quinolizidine (3-Spiro-2’’)Tetrahydrothiophene System Using Solid Liquid or Liquid Liquid Phase-Transfer Catalysis. Synthesis 1987, (5), 452-455.
8. Claeson, G. J., Hans G. , Resolution and configuration of thiophane-2- carboxylic acid. Arkiv för kemi. 1966, 26, 247-257.
9. Chein, R. J., unpublished result.
10. Johnson, A. W. L., R. B., 9-Dimethylsulfonium fluorenylide. Chem. Ind. (London) 1958, 1440.
11. Corey, E. J.; Chaykovsky, M., Dimethyloxosulfonium Methylide ((CH3)2SOCH2) and Dimethylsulfonium Methylide ((CH3)2SCH2). Formation and Application to Organic Synthesis. J. Am. Chem. Soc. 1965, 87 (6), 1353-1364.
12. Gololobov, Y. G.; Nesmeyanov, A. N.; lysenko, V. P.; Boldeskul, I. E., Twenty-five years of dimethylsulfoxonium ethylide (corey’’s reagent). Tetrahedron 1987, 43 (12), 2609-2651.
13. Furukawa, N.; Okano, K.; Fujihara, H., Synthesis of Oxiranes by Using Sulfides-Sulfonium Salts as Mediators. Nippon Kagaku Kaishi 1987, (7), 1353-1358.
14. Furukawa, N.; Sugihara, Y.; Fujihara, H., Camphoryl sulfide as a chiral auxiliary and a mediator for one-step synthesis of optically active 1,2-diaryloxiranes. J. Org. Chem. 1989, 54 (17), 4222-4224.
15. Li, A.-H.; Dai, L.-X.; Hou, X.-L.; Huang, Y.-Z.; Li, F.-W., Preparation of Enantiomerically Enriched (2R,3R)- or (2S,3S)-trans-2,3-Diaryloxiranes via Camphor-Derived Sulfonium Ylides. J. Org. Chem. 1996, 61 (2), 489-493.
16. Julienne, K.; Metzner, P.; Henryon, V.; Greiner, A., A Simple C2 Symmetrical Sulfide for a One-Pot Asymmetric Conversion of Aldehydes into Oxiranes. J. Org. Chem. 1998, 63 (13), 4532-4534.
17. Zanardi, J.; Leriverend, C.; Aubert, D.; Julienne, K.; Metzner, P., A Catalytic Cycle for the Asymmetric Synthesis of Epoxides Using Sulfur Ylides. J. Org. Chem. 2001, 66 (16), 5620-5623.
18. Saito, T.; Akiba, D.; Sakairi, M.; Kanazawa, S., Preparation of a novel, camphor-derived sulfide and its evaluation as a chiral auxiliary mediator in asymmetric epoxidation via the Corey–Chaykovsky reaction. Tetrahedron Lett. 2001, 42 (1), 57-59.
19. Winn, C. L.; Bellenie, B. R.; Goodman, J. M., A highly enantioselective one-pot sulfur ylide epoxidation reaction. Tetrahedron Lett. 2002, 43 (31), 5427-5430.
20. Miyake, Y.; Oyamada, A.; Nishibayashi, Y.; Uemura, S., Asymmetric synthesis of epoxides from aromatic aldehydes and benzyl halides catalyzed by C2 symmetric optically active sulfides having a binaphthyl skeleton. Heteroat. Chem 2002, 13 (3), 270-275.
21. Ishizaki, M.; Hoshino, O., Synthesis of novel C-2-symmetrical chiral sulfides and their utility in asymmetric epoxidation of aldehydes. Chirality 2003, 15 (4), 300-305.
22. Davoust, M.; Brière, J.-F.; Jaffrès, P.-A.; Metzner, P., Design of Sulfides with a Locked Conformation as Promoters of Catalytic and Asymmetric Sulfonium Ylide Epoxidation. J. Org. Chem. 2005, 70 (10), 4166-4169.
23. Zanardi, J.; Reboul, V.; Metzner, P., Direct utilization of naturally occurring sulfides for the asymmetric epoxidation of aldehydes mediated by catalytic ylides. Bull. Korean Chem. Soc. 2004, 25 (11), 1695-1698.
24. Minière, S.; Reboul, V.; Metzner, P.; Fochi, M.; Bonini, B. F., Catalytic ferrocenyl sulfides for the asymmetric transformation of aldehydes into epoxides. Tetrahedron: Asymmetry 2004, 15 (20), 3275-3280.
25. Hansch, M.; Illa, O.; McGarrigle, E. M.; Aggarwal, V. K., Synthesis and Application of Easily Recyclable Thiomorpholines for Use in Sulfur Ylide Mediated Asymmetric Epoxidation of Aldehydes. Chem. Asian J. 2008, 3 (8-9), 1657-1663.
26. Hayakawa, R.; Shimizu, M., Synthesis of chiral epoxides from aldehydes using sulfur ylide derived from reduced product of bakers’’ yeast reduction. Synlett 1999, (8), 1328-1330.
27. McGarrigle, E. M.; Myers, E. L.; Illa, O.; Shaw, M. A.; Riches, S. L.; Aggarwal, V. K., Chalcogenides as Organocatalysts. Chem. Rev. 2007, 107 (12), 5841-5883.
28. Illa, O.; Arshad, M.; Ros, A.; McGarrigle, E. M.; Aggarwal, V. K., Practical and Highly Selective Sulfur Ylide Mediated Asymmetric Epoxidations and Aziridinations Using an Inexpensive, Readily Available Chiral Sulfide. Applications to the Synthesis of Quinine and Quinidine. J. Am. Chem. Soc. 2010, 132 (6), 1828-1830.
29. Tsuji, J.; Takahashi, H.; Morikawa, M., Organic synthesis by means of noble metal compounds XVII. Reaction of pi-allylpalladium chloride with nucleophiles. Tetrahedron Lett. 1965, 6 (49), 4387-4388.
30. Trost, B. M.; Dietsch, T. J., New synthetic reactions. Asymmetric induction in allylic alkylations. J. Am. Chem. Soc. 1973, 95 (24), 8200-8201.
31. Trost, B. M.; Crawley, M. L., Asymmetric Transition-Metal-Catalyzed Allylic Alkylations: Applications in Total Synthesis. Chem. Rev. 2003, 103 (8), 2921-2944.
32. Evans, D. A.; Campos, K. R.; Tedrow, J. S.; Michael, F. E.; Gagné, M. R., Application of Chiral Mixed Phosphorus/Sulfur Ligands to Palladium-Catalyzed Allylic Substitutions. J. Am. Chem. Soc. 2000, 122 (33), 7905-7920.
33. Trost, B. M.; Frederiksen, M. U.; Rudd, M. T., Ruthenium-catalyzed reactions - A treasure trove of atom-economic transformations. Angew. Chem. Int. Ed. 2005, 44 (41), 6630-6666.
34. Minami, I.; Shimizu, I.; Tsuji, J., Reactions of Allylic Carbonates Catalyzed by Palladium, Rhodium, Ruthenium, Molybdenum, and Nickel-Complexes - Allylation of Carbonucleophiles and Decarboxylation-Dehydrogenation. J. Organomet. Chem. 1985, 296 (1-2), 269-280.
35. Bruneau, C.; Renaud, J. L.; Demerseman, B., Pentamethylcyclopentadienyl- ruthenium catalysts for regio- and enantioselective allylation of nucleophiles. Chem. Eur. J. 2006, 12 (20), 5178-5187.
36. Trost, B. M.; Fraisse, P. L.; Ball, Z. T., A Stereospecific Ruthenium-Catalyzed Allylic Alkylation. Angew. Chem. Int. Ed. 2002, 41 (6), 1059-1061.
37. Mbaye, M. D.; Demerseman, B.; Renaud, J. L.; Toupet, L.; Bruneau, C., Ruthenium-catalyzed O-allylation of phenols from allylic chlorides via cationic [Cp*(eta(3)-allyl)(MeCN)RuX][PF6] complexes. Adv. Synth. Catal. 2004, 346 (7), 835-841.
38. Gurbuz, N.; Ozdemir, I.; Cetinkaya, B.; Renaud, J. L.; Demerseman, B.; Bruneau, C., Regioselective allylic alkylation and etherification catalyzed by in situ generated N-heterocyclic carbene ruthenium complexes. Tetrahedron Lett. 2006, 47 (4), 535-538.
39. Mbaye, M. D.; Renaud, J. L.; Demerseman, B.; Bruneau, C., First enantioselective allylic etherification with phenols catalyzed by chiral ruthenium bisoxazoline complexes. Chem. Commun. 2004, (16), 1870-1871.
40. Kulkarni, S. S.; Newman, A. H., Design and synthesis of novel heterobiaryl amides as metabotropic glutamate receptor subtype 5 antagonists. Bioorg. Med. Chem. Lett. 2007, 17 (7), 2074-2079.
41. Wang, Z.-X.; Tu, Y.; Frohn, M.; Zhang, J.-R.; Shi, Y., An Efficient Catalytic Asymmetric Epoxidation Method. J. Am. Chem. Soc. 1997, 119 (46), 11224-11235.
42. Wong, O. A.; Shi, Y., Organocatalytic Oxidation. Asymmetric Epoxidation of Olefins Catalyzed by Chiral Ketones and Iminium Salts. Chem. Rev. 2008, 108 (9), 3958-3987.
43. Frohn, M.; Shi, Y., Chiral ketone-catalyzed asymmetric epoxidation of olefins. Synthesis 2000, (14), 1979-2000.
44. Hughes, D. L.; Reamer, R. A.; Bergan, J. J.; Grabowski, E. J. J., A mechanistic study of the Mitsunobu esterification reaction. J. Am. Chem. Soc. 1988, 110 (19), 6487-6491.
45. Lepore, S. D.; He, Y., Use of Sonication for the Coupling of Sterically Hindered Substrates in the Phenolic Mitsunobu Reaction. J. Org. Chem. 2003, 68 (21), 8261-8263.
46. Noyori, R.; Murata, S.; Suzuki, M., Trimethysilyl triflate in organic synthesis. Tetrahedron 1981, 37 (23), 3899-3910.
47. Murata, S.; Noyori, R., A facile procedure for o-tritylation. Tetrahedron Lett. 1981, 22 (22), 2107-2108.
48. Goux, C.; Massacret, M.; Lhoste, P.; Sinou, D., Stereo- and Regioselectivity in Palladium-Catalyzed Allylic Etherification. Organometallics 1995, 14 (10), 4585-4593.
49. Evans, P. A.; Leahy, D. K., Regio- and Enantiospecific Rhodium-Catalyzed Allylic Etherification Reactions Using Copper(I) Alkoxides: Influence of the Copper Halide Salt on Selectivity. J. Am. Chem. Soc. 2002, 124 (27), 7882-7883.
50. Jensen, S. B.; Rodger, S. J.; Spicer, M. D., Facile preparation of η6-p-cymene ruthenium diphosphine complexes. Crystal structure of [(η6-p-cymene)Ru (dppf)Cl]PF6. J. Organomet. Chem. 1998, 556 (1–2), 151-158.
51. Sun, Y.; Machala, M. L.; Castellano, F. N., Controlled microwave synthesis of RuII synthons and chromophores relevant to solar energy conversion. Inorg. Chim. Acta 2010, 363 (1), 283-287.
52. Mercier, A.; Yeo, W. C.; Chou, J. Y.; Chaudhuri, P. D.; Bernardinelli, G.; Kundig, E. P., Synthesis of highly enantiomerically enriched planar chiral ruthenium complexes via Pd-catalysed asymmetric hydrogenolysis. Chem. Commun. 2009, (35), 5227-5229.
53. Kündig, E. P.; Monnier, F. R., Efficient Synthesis of Tris(acetonitrile)- (η5-cyclopentadienyl)-ruthenium(II) Hexafluorophosphate via Ruthenocene. Adv. Synth. Catal. 2004, 346 (8), 901-904.
54. Chaplin, A. B.; Dyson, P. J., Catalytic Activity of Bis-phosphine Ruthenium(II)-Arene Compounds: Structure-Activity Correlations. Organometallics 2007, 26 (9), 2447-2455.
55. Srinivasan, R.; Uttamchandani, M.; Yao, S. Q., Rapid Assembly and in Situ Screening of Bidentate Inhibitors of Protein Tyrosine Phosphatases. Org. Lett. 2006, 8 (4), 713-716.
56. Robiette, R.; Conza, M.; Aggarwal, V. K., Delineation of the factors governing reactivity and selectivity in epoxide formation from ammonium ylides and aldehydes. Org. Biomol. Chem. 2006, 4 (4), 621-623.
57. Imuta, M.; Ziffer, H., Synthesis and physical properties of a series of optically active substituted trans-stilbene oxides. J. Org. Chem. 1979, 44 (14), 2505-2509.
58. Linde, C.; Koliaï, N.; Norrby, P.-O.; Åkermark, B., Experimental Evidence for Multiple Oxidation Pathways in the (salen)Mn-Catalyzed Epoxidation of Alkenes. Chem. Eur. J. 2002, 8 (11), 2568-2573.
59. Latham, C. M.; Blake, A. J.; Lewis, W.; Lawrence, M.; Woodward, S., Short Synthesis of Chiral 4-Substituted (S)-Imidazolinium Salts Bearing Sulfonates and Their Use in γ-Selective Reactions of Allylic Halides with Grignard Reagents. Eur. J. Org. Chem. 2012, 2012 (4), 699-707.
60. Jackowski, O.; Alexakis, A., Copper-Free Asymmetric Allylic Alkylation with Grignard Reagents. Angew. Chem. Int. Ed. 2010, 49 (19), 3346-3350.
61. Levy, J.-N.; Latham, C. M.; Roisin, L.; Kandziora, N.; Fruscia, P. D.; White, A. J. P.; Woodward, S.; Fuchter, M. J., The design and synthesis of novel IBiox N-heterocyclic carbene ligands derived from substituted amino-indanols. Org. Biomol. Chem. 2012, 10 (3), 512-515.
62. Yuan, F. Q.; Gao, L. X.; Han, F. S., PdCl2-catalyzed efficient allylation and benzylation of heteroarenes under ligand, base/acid, and additive-free conditions. Chem. Commun. 2011, 47 (18), 5289-5291.
63. Onitsuka, K.; Okuda, H.; Sasai, H., Regio- and Enantioselective O-Allylation of Phenol and Alcohol Catalyzed by a Planar-Chiral Cyclopentadienyl Ruthenium Complex. Angew. Chem. Int. Ed. 2008, 47 (8), 1454-1457.
64. Shang, X. J.; Xiong, Y.; Zhang, Y. X.; Zhang, L.; Liu, Z. Q., Pd(II)-Catalyzed Direct Olefination of Arenes with Allylic Esters and Ethers. Synlett 2012, (2), 259-262.
|