博碩士論文 992206045 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:18.217.212.222
姓名 曹書茵(Shu-yin Tsao)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 基於離子交換技術來實現波導式表面增強拉曼散射
(The Realization of Surface Enhanced Raman Scattering (SERS) Active Waveguide Based on Ion-Exchange Technique)
相關論文
★ 以側磨光纖半塊材耦合器激發微米球型共振腔基模之研究★ 以氬離子雷射對玻璃材料加工之研究
★ 以裸光纖激發球共振腔之共振譜研究★ 錐狀平面波導光柵結構與微米小球共振腔之光耦合效率研究
★ 溶膠凝膠法合成以鉭元素為基礎的全固態電致變色元件★ S型彎曲波導與微米小球共振腔之光耦合效率研究
★ 錐狀光纖與微米球共振腔耦合之研究與應用★ 以鎖模鈦藍寶石飛秒雷射雙光子聚合製作光波導微結構之研究
★ 利用光子晶體的能隙邊緣移動達成全光開關之研究★ 利用繞射圖形檢測錐狀光纖的製造與品質
★ 利用雙光子聚合技術製作高耦合效率波導陣列光纖耦合器★ 光學印刷電路板之製作與特性分析
★ 鈉鉀離子交換波導之製作及其表面消逝波之研究★ 拉伸式長週期光纖光柵的模態色散現象研究
★ 可調式窄頻液晶濾波器★ 基於D形光纖之拉曼感測器模擬與設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用離子交換波導技術製作表面增強拉曼散射之基板及波導試片。利用鋁薄膜當作還原電極將銀離子還原於波導兩側,二階段離子交換製程更進一步加強銀離子的還原,增加填充率,並導致吸收波長紅移。利用氫氟酸蝕刻樣品使得銀原子裸露至表面與目標分子R6G更為靠近。拉曼譜的量測證明此系統是具分子指紋辨識性的。
摘要(英) Surface enhanced Raman scattering (SERS) active planar and waveguide substrate are fabricated using ion-exchange technique. The Aluminium thin film acts as the electrode which provides electrons assisting the reduction of silver ions alongside the waveguide. The accumulation of silver nano particles can be further enhanced by two step ion exchange technology. The extinction spectrum exhibits a broadened and red-shifted peak indicating that the filling fraction was increased, and the distribution of the particle size and shape are not mono-dispersed. To expose the silver particles so as to place the target molecule in close proximity to the surface, we etched the samples by HF. From the measured Raman spectrum, the finger print of R6G molecule is clearly in evidence.
關鍵字(中) ★ 分子指紋
★ 振動光譜
★ 拉曼散射
★ 表面電漿
★ 離子交換
關鍵字(英) ★ vibration spectrum
★ molecle fingerprint
★ Raman scattering
★ ion-exchange
★ surface plasmon
論文目次 中文摘要 I
Abstract II
誌謝 III
目錄 i
圖目錄 iii
表目錄 vii
第一章 緒論 1
1.1 分子感測技術的發展 1
1.2 表面增強拉曼散射光譜 4
1.3 表面電漿共振 6
1.4 研究動機 8
1.5 論文架構 9
第二章 研究方法 10
2.1 實驗架構概述 10
2.2 羅倫茲杜德模型與表面電漿極化子 14
2.3 麥克斯威爾-加內特理論 23
2.4 增強係數 26
2.5 離子交換法 27
第三章 實驗設計與樣品製作 36
3.1 樣品製作 36
3.2 樣品特性分析 40
3.3 光學量測架構 56
第四章 實驗結果與討論 58
4.1 薄膜式樣品拉曼散射譜 58
4.2 平板式樣品與波導式樣品拉曼散射譜 60
4.3 討論 62
第五章 總結與未來展望 64
參考文獻 65
參考文獻 [1] R.G. Heideman,R.P.H. Kooyman and J. Greve, ’’Performance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor, ’’ Sensors and Actuators B: Chemical 10, Issue 3, February 1993, P.209-217.
[2]K.Kneipp,M.Moskovits,H.Kneipp(Eds.), ’’Surface Enhanced Raman Scattering, ’’ Physics and Applications 103, 2006.
[3]Paul L. Stiles, Jon A. Dieringer, Nilam C. Shah,and Richard P. Van Duyne, ’’Surface-Enhanced Raman Spectroscopy, ’’ Annu. Rev. Anal. Chem., 2008, P.601–26.
[4]P. D. Maker and R. W. Terhune, ’’Study of Optical Effects Due to an Induced Polarization Third Order in the Electric Field Strength, ’’ Phys. Rev. 137, Issue3A, 1965, P.801-818.
[5]David W. Hahn, ’’Raman Scattering Theory, ’’ Department of Mechanical and Aerospace Engineering University of Florida, February 2007.
[6]M. Fleischman, P.J. Hendra, A.J. McQuillan, ’’Chemical shift tensor in fluorobenzene compounds, ’’ Chem.Phys. Lett. 26,123, 1974.
[7]D. L. Jeanmaire, R. P. Van Duyne, ’’Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode., ’’ J. Electroanal. Chem. 84,1977, P.1-20.
[8]M. G. Albrecht, J. A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode, J. Am. Chem. Soc., 99, 5215, 1977.
[9]M. Moskovits, ’’Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals, ’’ J. Chem. Phys. 69, 1978,4159-4161.
[10]K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. R. Dasari, M. S. Feld, ’’Population pumping of excited vibrational states by surface - enhanced Raman scattering., ’’ Phys.Rev. Lett. 76, 1996, P.2444-2448.
[11]Katrin Kneipp, Yang Wang, Harald Kneipp, Lev T. Perelman, Irving Itzkan, Ramachandra R. Dasari, and Michael S. Feld, ’’Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS), ’’ Phys. Rev. Lett. 78, 1997, P.1667-1670.
[12]W. A. Lyon, S. Nie, ’’Confinement and detection of single molecules in submicrometer channels, ’’ Anal. Chem. 69, 1997, P.3400-3405.
[13]S. Nie, S. R. Emory, ’’Probing single molecules and single nanoparticles by surface-enhanced Raman scattering, ’’ Science 275, 1997, P.1102-1106.
[14]K. Kneipp, H. Kneipp, V. B. Kartha, et al., ’’Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS), ’’ Phys. Rev. E 57, 1998, R6281-6284.
[15]Wood, R. W., ’’On a remarkable case of uneven distribution of light in a diffraction grating spectrum, ’’ Philysophical magazine 4, 1902, P.396-402.
[16]Wood, R. W., ’’Diffraction gratings with controlled groove form and abnormal distribution of intensity, ’’ Philysophical magazine 23, 1912, P.310-317.
[17]Kretschmann E. and Reather, H., ’’Radiative decay of nonradiative surface plasmon excited by light, ’’ Z.Naturf. 23A,1968, P.2135-2136.
[18]Otto A., ’’Exitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection, ’’ Z Phys 216, 1968, P.398-410.
[19]E. C. Le Ru,* E. Blackie, M. Meyer, and P. G. Etchegoin, ’’Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study, ’’ J. Phys. Chem. C 111,2007, P.13794-13803.
[20]H. Du, R. A. Fuh, J. Li, A. Corkan, J. S. Lindsey, ’’PhotochemCAD: A computer-aided design and research tool in photochemistry., ’’ Photochemistry and Photobiology 68, 1988, P.141-142.
[21]Ya Chen, Janne Jaakola, Yanling Ge, Antti Saynatjoki, Ari Tervonen, Simo-Pekka Hannula, Seppo Honkanen, ’’In situ fabrication of aveguide-compatible glass-embedded silver nanoparticle patterns by masked ion-exchange process, ’’ ’’Journal of Non-Crystalline Solids 355, 2009, P.2224–2227.
[22]Ya Chen, Lasse Karvonen, Antti Säynätjoki, Changgeng Ye, Ari Tervonen, and Seppo Honkanen, ’’Ag nanoparticles embedded in glass by two-step ion exchange and their SERS application, ’’ Optical Materials Express1, NO.2, 2011, P.164-172.
[23]Richard J. C. Brown, Jian Wang, Ratna Tantra, Rachel E. Yardley and Martin J. T. Milton , ’’Electromagnetic modelling of Raman enhancement from nanoscale substrates: a route to estimation of the magnitude of the chemical enhancement mechanism in SERS, ’’ Faraday Discuss. 132, 2006, P.201-213.
[24]M. A. Ordal, R. J. Bell, J. R. W. Alexader, L. L. Long, and M. R. Querry, ’’Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W, ’’ Appl. Opt. 24, Dec 1985, P.4493~4499.
[25]Aleksandar D. Rakic, Aleksandra B. Djurišic, Jovan M. Elazar, and Marian L., Majewski, ’’Optical Properties of Metallic Films for Vertical-Cavity Optoelectronic Devices, Applied Optics 37, Issue 22, ’’ 1998, P. 5271-5283.
[26]P. B. Johnson and R. W. Christy , ’’Optical Constants of the Noble Metals, ’’ Phys. Rev. B 6, 1972, 4370–4379.
[27]Giovanni Piredda, David D. Smith, Bettina Wendling, and Robert W. Boyd, ’’Nonlinear optical properties of a gold-silica composite with high gold fill fraction and the sign change of its nonlinear absorption coefficient, ’’ J. Opt. Soc. Am. B 25, No. 6, 2008, P.945-950.
[28]R.Gupta, W.A. Weimer, ’’High Enhancement Factor Gold Films for Surface Enhanced Raman Spectroscopy, ’’ Chemical Physics Letters 374, 2003, P.302-306.
[29] Ji Zhou, Shuping Xu, Weiqing Xu, Bing Zhao, Yukihiro Ozaki, ’’In situ nucleation and growth of silver nanoparticles in membrane materials: a controllable roughened SERS substrate with high reproducibility, ’’ Journal of Raman Spectroscopy 40, Issue 1, 2009, P.31–37.
[30]http://www.ingenious.org.uk/See/?target=SeeLarge&ObjectID={DE0D42A0-B68F-8F01-3D52-080D04E6CB4D}&source=Search&SearchCategoryID={C30DE785-2657-4A36-A5A6-000000042535}&viewby=images
[31] Martin N. Weiss and Ramakant Srivastava, ’’Determination of ion-exchanged channel waveguide profile parameters by mode-index measurements, ’’ APPLIED OPTICS 34. No. 3, 1995.
[32]G. L. Yip and J. Albert, ’’Characterization of planar optical waveguides by K+-ion exchange in glass, ’’ OPTICS LETTERS 10, No. 3, March 1985, P.151-153
[33]Ya Chen, Janne Jaakola, Yanling Ge, Antti Saynatjoki, Ari Tervonen, Simo-Pekka Hannula, Seppo Honkanen, ’’In situ fabrication of waveguide-compatible glass-embedded silver nanoparticle patterns by masked ion-exchange process, ’’ Journal of Non-Crystalline Solids 355, 2009, P. 2224–2227.
[34]Tamitake Itoh, Kazuhiro Hashimoto, Akifumi Ikehata, and Yukihiro Ozaki, ’’Direct demonstration for changes in surface plasmon resonance included by surface-enhanced Raman scattering quenching of dye molecules adsorbed on single Ag nanoparticles., ’’ Appl. Phys. Lett. 83, No.26, 2003, P.5557-5559.
[35]http://www2.thu.edu.tw/~chemeng/ccdownload/csho/95(2)/Lecture%206(SIMS).pdf
[36]http://web.nchu.edu.tw/~rootdis/plant%20pathology/97Session/002-970926/ch4microscope.pdf
[37] http://www.indepthinfo.com/microscopes/images/compound-microscope.jpg
[38]http://upload.wikimedia.org/wikipedia/commons/thumb/1/17/Dark_Field_Microscope.png/800px-Dark_Field_Microscope.png
[39] http://www.farmfak.uu.se/farm/farmfyskem-web/instrumentation/afm.shtml
[40] http://www.temple.edu/strongin/afm.html
[41] Lukas Novotny and Bert Hecht, ’’Principle of Nano-Optics, ’’ Cambridge University Press, 2006, P.225-239.
[42] Ya Chen, Janne J. Jaakola, Antti S¨ayn¨ atjoki, Ari Tervonen and Seppo Honkanen, ’’Glass-embedded silver nanoparticle patterns by masked ion-exchange process for surface-enhanced Raman scattering, ’’ J. Raman Spectrosc 42, 2011, P.936–940.
[43] Stefan A. Meyer, Eric C. Le Ru, and Pablo G. Etchegoin, ’’Quantifying Resonant Raman Cross Sections with SERS, ’’ J. Phys. Chem. A 114, 2010, P.5515–5519.
指導教授 戴朝義(Chao-yi Tai) 審核日期 2012-1-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明