參考文獻 |
1. http://euanmearns.com/global-energy-trends-bp-statistical-review-2014/
2. http://www.nrel.gov/ncpv/
3. http://news.panasonic.com/press/news/official.data/data.dir/2013/02/en130212-7/en130212-7.html
4. http://www.pv-tech.org/news/back_contact_hit_solar_cell_from_panasonic_pushes_efficiency_record_to_25.6
5. Bloomberg, New Energy Finance & pv.energytrend.com
6. M. Bender, W. Seelig, C. Daube, H. Frankenberger, B. Ocker, and J. Stollenwerk, "Dependence of oxygen flow on optical and electrical properties of DC-magnetron sputtered ITO films," Thin Solid Films 326, 72-77 (1998).
7. P S. Miyajima, M. Sawamura, A. Yamada, and M. Konagai, "Properties of n-type hydrogenated nanocrystalline cubic silicon carbide films deposited by VHF-PECVD at a low substrate temperature," J Non-Cryst Solids 354, 2350-2354 (2008).
8. Y. Tsunomura, Y. Yoshimine, M. Taguchi, T. Baba, T. Kinoshita, H. Kanno, H. Sakata, E. Maruyama, and M. Tanaka, "Twenty-two percent efficiency HIT solar cell," Sol Energ Mat Sol C 93, 670-673 (2009).
9. A. Descoeudres, L. Barraud, S. De Wolf, B. Strahm, D. Lachenal, C. Guerin, Z. C. Holman, F. Zicarelli, B. Demaurex, J. Seif, J. Holovsky, and C. Ballif, "Improved amorphous/crystalline silicon interface passivation by hydrogen plasma treatment," Appl Phys Lett 99 (2011).
10. K. S. Ji, J. Choi, H. Yang, H. M. Lee, and D. Kim, "A study of crystallinity in amorphous Si thin films for silicon heterojunction solar cells," Sol Energ Mat Sol C 95, 203-206 (2011).
11. A. Descoeudres, L. Barraud, R. Bartlome, G. Choong, S. De Wolf, F. Zicarelli, and C. Ballif, "The silane depletion fraction as an indicator for the amorphous/crystalline silicon interface passivation quality," Appl Phys Lett 97 (2010).
12. N. Hernandez-Como, and A. Morales-Acevedo, "Simulation of hetero-junction silicon solar cells with AMPS-1D," Sol Energ Mat Sol C 94, 62-67 (2010).
13. I. Mathews, D. O′Mahony, B. Corbett, and A. P. Morrison, " Theoretical performance of multi-junction solar cells combining III-V and Si materials," Optics Express 20 (S5), A754-A764 (2012).
14. R. Ichikawa, S. Takita, Y. Ishikawa, and K. Wada, "Germanium as a Material to Enable Silicon Photonics," Silicon Photonics Ii: Components and Integration 119, 131-141 (2011)
15. M. R. Lueck, C. L. Andre, A. J. Pitera, M. L. Lee, E. A. Fitzgerald, and S. A. Ringel, "Dual Junction GaInP/GaAs Solar Cells Grown on Metamorphic SiGe/Si Substrates With High Open Circuit Voltage," IEEE Electron Device Lettters 27 (3), 142-144 (2006).
16. J. Faucher, A. Gerger, S. Tomasulo, C. Ebert, A. Lochtefeld, A. Barnett, and M. L. Lee, "Single-junction GaAsP solar cells grown on SiGe graded buffers on Si," Appl. Pysic Lettters 103, 191901 (2013).
17. D. E. Carlson and C. R. Wronski, "Amorphous silicon solar cell," Appl. Phys. Lett. 28, 671 (1976).
18. P.G. Le Comber and W.E. Spear, in: J. PanKore(Eds.), Semiconductor and semimetals, New York, 1984, Part D, Chapter 6.
19. T. Lagarde, Y. Arnal, A. Lacoste, and J. Pelletier, "Determination of the EEDF by Langmuir probe diagnostics in a plasma excited at ECR above a multipolar magnetic field," Plasma Sources Sci T 10, 181-190 (2001)
20. P. Bulkin, N. Bertrand, B. Drevillon, J. C. Rostaing, F. Delmotte, M. C. Hugon, and B. Agius, "Plasma enhanced chemical vapour deposition of silica thin films in an integrated distributed electron cyclotron resonance reactor," Thin Solid Films 308, 63-67 (1997).
21. A. Lacoste, T. Lagarde, S. Bechu, Y. Arnal, and J. Pelletier, "Multi-dipolar plasmas for uniform processing: physics, design and performance," Plasma Sources Sci T 11, 407-412 (2002).
22. F. S. Pool, "Nitrogen plasma instabilities and the growth of silicon nitride by electron cyclotron resonance microwave plasma chemical vapor deposition," J Appl Phys 81, 2839-2846 (1997).
23. R. Nozawa, H. Takeda, M. Ito, M. Hori, and T. Goto, "In situ observation of hydrogenated amorphous silicon surfaces in electron cyclotron resonance hydrogen plasma annealing," J Appl Phys 85, 1172-1177 (1999).
24. K. Chew, Rusli, M. B. Yu, S. F. Yoon, V. Ligatchev, and J. Ahn, "Density of gap states in amorphous hydrogenated silicon carbide determined using high-frequency capacitance-voltage measurement technique," Diam Relat Mater 10, 1273-1277 (2001).
25. E. Vallat-Sauvain, U. Kroll, J. Meier, A. Shah, and J. Pohl, "Evolution of the microstructure in microcrystalline silicon prepared by very high frequency glow-discharge using hydrogen dilution," J Appl Phys 87, 3137-3142 (2000).
26. A.H. Mahan, D.L. Williamson, B.P. Nelson, and R.S. Crandall, Solar Cells 21, 12024 (1987).
27. M. H. Brodsky, M. Cardona, and J. J. Cuomo, "Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow charge and sputtering," Physical Review B.16, 3555 (1977).
28. A. H. Mahan, J. Yang, S. Guha, and D. L. Williamson, "Structural changes in a-Si:H film crystallinity with high H dilution," Phys Rev B 61, 1677-1680 (2000).
29. C. Smit, R. A. C. M. M. van Swaaij, H. Donker, A. M. H. N. Petit, W. M. M. Kessels, and M. C. M. van de Sanden, "Determining the material structure of microcrystalline silicon from Raman spectra," J Appl Phys 94, 3582-3588 (2003).
30. H. Kakiuchi, M. Matsumoto, Y. Ebata, H. Ohmi, K. Yasutake, K. Yoshii, and Y. Mori, "Characterization of intrinsic amorphous silicon layers for solar cells prepared at extremely high rates by atmospheric pressure plasma chemical vapor deposition," J Non-Cryst Solids 351, 741-747 (2005).
31. Y. Tsunomura, Y. Yoshimine, M. Taguchi, T. Baba, T. Kinoshita, H. Kanno, H. Sakata, E. Maruyama, and M. Tanaka, "Twenty-two percent efficiency HIT solar cell," Sol Energ Mat Sol C 93, 670-673 (2009).
32. J. I. Pankove and M. L. Tarng,"Amorphous silicon as a passivant for crystalline silicon," Appl. Phys. Lett. 34, 156 (1979).
33. S. De Wolf, S. Olibet, and C. Ballif, "Stretched-exponential a-Si : H/c-Si interface recombination decay," Appl Phys Lett 93 (2008).
34. T. F. Schulze, H. N. Beushausen, C. Leendertz, A. Dobrich, B. Rech, and L. Korte, "Interplay of amorphous silicon disorder and hydrogen content with interface defects in amorphous/crystalline silicon heterojunctions," Appl Phys Lett 96 (2010).
35. J. W. A. Schuttauf, K. H. M. van der Werf, I. M. Kielen, W. G. J. H. M. van Sark, J. K. Rath, and R. E. I. Schropp, "Excellent crystalline silicon surface passivation by amorphous silicon irrespective of the technique used for chemical vapor deposition," Appl Phys Lett 98 (2011).
36. I. Martin, M. Vetter, A. Orpella, J. Puigdollers, A. Cuevas, and R. Alcubilla, "Surface passivation of p-type crystalline Si by plasma enhanced chemical vapor deposited amorphous SiCx : H films," Appl Phys Lett 79, 2199-2201 (2001).
37. I. Martin, M. Vetter, A. Orpella, C. Voz, J. Puigdollers, and R. Alcubilla, "Surface passivation of n-type crystalline Si by plasma-enhanced-chemical-vapor-deposited amorphous SiCx : H and amorphous SiCxNy : H films," Appl Phys Lett 81, 4461-4463 (2002).
38. I. Martin, M. Vetter, M. Garin, A. Orpella, C. Voz, J. Puigdollers, and R. Alcubilla, "Crystalline silicon surface passivation with amorphous SiCx : H films deposited by plasma-enhanced chemical-vapor deposition," J Appl Phys 98 (2005).
39. Y. Kawai, K. Uchino, H. Muta, and T. Rowf, "Development of a 915 MHz ECR plasma source," Vacuum 87, 123-127 (2013).
40. M. Vetter, I. Martin, R. Ferre, M. Garin, and R. Alcubilla, "Crystalline silicon surface passivation by amorphous silicon carbide films," Sol Energ Mat Sol C 91, 174-179 (2007).
41. J. K. Seo, Y. H. Joung, Y. Park, and W. S. Choi, "Substrate temperature effect on the SiC passivation layer synthesized by an RF magnetron sputtering method," Thin Solid Films 519, 6654-6657 (2011).
42. J. K. Seo, K. H. Ko, W. S. Choi, M. Park, J. H. Lee, and J. S. Yi, "The effect of deposition RF power on the SiC passivation layer synthesized by an RF magnetron sputtering method," J Cryst Growth 326, 183-185 (2011).
43. J. Damon-Lacoste, and P. R. I. Cabarrocas, "Toward a better physical understanding of a-Si:H/c-Si heterojunction solar cells," J Appl Phys 105 (2009).
44. C. W. Teplin, D. H. Levi, E. Iwaniczko, K. M. Jones, J. D. Perkins, and H. M. Branz, "Monitoring and modeling silicon homoepitaxy breakdown with real-time spectroscopic ellipsometry," J Appl Phys 97 (2005).
45. H. Fujiwara, and M. Kondo, "Impact of epitaxial growth at the heterointerface of a-Si : H/c-Si solar cells," Appl Phys Lett 90 (2007).
46. T. H. Wang, E. Iwaniczko, M. R. Page, D. H. Levi, Y. Yan, H. M. Branz, and Q. Wang, "Effect of emitter deposition temperature on surface passivation in hot-wire chemical vapor deposited silicon heterojunction solar cells," Thin Solid Films 501, 284-287 (2006).
47. G. E. Jellison, and F. A. Modine, "Parameterization of the optical functions of amorphous materials in the interband region," Appl Phys Lett 69, 371-373 (1996).
48. H. Fujiwara, J. Koh, P. I. Rovira, and R. W. Collins, "Assessment of effective-medium theories in the analysis of nucleation and microscopic surface roughness evolution for semiconductor thin films," Phys. Rev. B 61(16), 10832–10844 (2000).
49. T. Friessnegg, M. Boudreau, P. Mascher, A. Knights, P. J. Simpson, and W. Puff, "Defect structure of carbon rich a-SiC : H films and the influence of gas and heat treatments," J Appl Phys 84, 786-795 (1998).
50. E. Gat, M. A. Elkhakani, M. Chaker, A. Jean, S. Boily, H. Pepin, J. C. Kieffer, J. Durand, B. Cros, F. Rousseaux, and S. Gujrathi, "A Study of the Effect of Composition on the Microstructural Evolution of a-Sixcl-X - H Pecvd Films - Ir Absorption and Xps Characterizations," J Mater Res 7, 2478-2487 (1992).
51. I. Atilgan, O. Ozdemir, B. Akaoglu, K. Sel, and B. Katircioglu, "Transport studies of carbon-rich a-SiCx : H film through admittance and deep-level transient spectroscopy measurements," Philos Mag 86, 2771-2796 (2006).
52. D. K. Basa, and F. W. Smith, "Annealing and Crystallization Processes in a Hydrogenated Amorphous Si-C Alloy Film," Thin Solid Films 192, 121-133 (1990).
53. K. Mui, D.K.B., F.W. Smith and Reed Corderman, "Optical constants of a series of amorphous hydrogenated silicon-carbon alloy films: Dependence of optical response on film microstructure and evidence for homogeneous chemical ordering," Physical Review B 35 (15), 8089-8102 (1987).
54. W.A. Lanford and M.J. Rand, "The hydrogen content of plasma-deposited silicon nitride," Journal of Applied Physics 49 (4), 2473–2477 (1978).
55. E. Gat, M. A. Elkhakani, M. Chaker, A. Jean, S. Boily, H. Pepin, J. C. Kieffer, J. Durand, B. Cros, F. Rousseaux, and S. Gujrathi, "A Study of the Effect of Composition on the Microstructural Evolution of a-Sixcl-X - H Pecvd Films - Ir Absorption and Xps Characterizations," J Mater Res 7, 2478-2487 (1992).
56. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, "Solar cell efficiency tables (version 43)," Prog Photovoltaics 22, 1-9 (2014).
57. T. H. Chang, Y. H. Chu, C. C. Lee, and J. Y. Chang, "Crystalline silicon interface passivation improvement with a-Si1-xCx:H and its application in hetero-junction solar cells with intrinsic layer," Appl Phys Lett 101 (2012).
58. S. Y. Lien, and D. S. Wuu, "Simulation and Fabrication of Heterojunction Silicon Solar Cells from Numerical Computer and Hot-Wire CVD," Prog Photovoltaics 17, 489-501 (2009).
59. J. Sritharathikhun, H. Yamamoto, S. Miyajima, A. Yamada, and M. Konagai, "Optimization of Amorphous Silicon Oxide Buffer Layer for High-Efficiency p-Type Hydrogenated Microcrystalline Silion Oxide/n-Type Crystalline Silicon Heterojunction Solar Cells," Jpn J Appl Phys 47, 8452-8455 (2008).
60. S. Inthisang, K. Sriprapha, S. Miyajima, A. Yamada, and M. Konagai, "Hydrogenated Amorphous Silicon Oxide Solar Cells Fabricated near the Phase Transition between Amorphous and Microcrystalline Structures," Jpn J Appl Phys 48 (2009).
61. K. Sriprapha, N. Sitthiphol, P. Sangkhawong, V. Sangsuwan, A. Limmanee, and J. Sritharathikhun, "p-Type hydrogenated silicon oxide thin film deposited near amorphous to microcrystalline phase transition and its application to solar cells," Curr Appl Phys 11, S47-S49 (2011).
62. C. Banerjee, K. L. Narayanan, N. K. Haga, J. Sritharathikhun, S. Miyajima, A. Yamada, and M. Konagai, "Fabrication of microcrystalline cubic silicon carbide/crystalline silicon heterojunction solar cell by hot wire chemical vapor deposition," Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers 46, 1-6 (2007).
63. C. T. Lee, L. H. Tsai, Y. H. Lin, and G. R. Lin, "A Chemical Vapor Deposited Silicon Rich Silicon Carbide P-N Junction Based Thin-Film Photovoltaic Solar Cell," Ecs J Solid State Sc 1, Q144-Q148 (2012).
64. F. Zignani, A. Desalvo, E. Centurioni, D. Iencinella, R. Rizzoli, C. Summonte, and A. Migliori, "Silicon heterojunction solar cells with p nanocrystalline thin emitter on monocrystalline substrate," Thin Solid Films 451, 350-354 (2004).
65. W. S. Yan, D. Y. Wei, S. Xu, and H. P. Zhou, "Highly doped p-type nanocrystalline silicon thin films fabricated by low-frequency inductively coupled plasma without H-2 dilution," J Appl Phys 110 (2011).
66. H. Y. Mao, S. Y. Lo, D. S. Wuu, B. R. Wu, S. L. Ou, H. Y. Hsieh, and R. H. Horng, "Hot-wire chemical vapor deposition and characterization of p-type nanocrystalline Si films for thin film photovoltaic applications," Thin Solid Films 520, 5200-5205 (2012).
67. V. S. Waman, M. M. Kamble, S. S. Ghosh, A. Mayabadi, V. G. Sathe, H. M. Pathan, S. D. Shinde, K. P. Adhi, and S. R. Jadkar, "Highly conducting phosphorous doped n-type nc-Si:H films by HW-CVD for c-Si heterojunction solar cells," Rsc Adv 2, 9873-9880 (2012).
68. F. Zignani, A. Desalvo, E. Centurioni, D. Iencinella, R. Rizzoli, C. Summonte, and A. Migliori, "Silicon heterojunction solar cells with p nanocrystalline thin emitter on monocrystalline substrate," Thin Solid Films 451, 350-354 (2004).
69. E. Spanakis, E. Stratakis, P. Tzanetakis, H. Fritzsche, S. Guha, and J. Yang, "Light induced stress in a-Si1-xGex : H alloys and its correlation with the Staebler-Wronski effect," J Non-Cryst Solids 299, 521-524 (2002)
70. R. E. I. Schropp, H. Li, R. H. Franken, J. K. Rath, C. H. M. van der Werf, M. A. Schuttauf, and R. L. Stolk, "Nanostructured thin films for multiband-gap silicon triple junction solar cells," Thin Solid Films 516, 6818-6823 (2008).
71. B. J. Yan, G. Z. Yue, X. X. Xu, J. Yang, and S. Guha, "High efficiency amorphous and nanocrystalline silicon solar cells," Phys Status Solidi A 207, 671-677 (2010).
72. M. Ito, C. Koch, V. Svrcek, M. B. Schubert, and J. H. Werner, "Silicon thin film solar cells deposited under 80 degrees C," Thin Solid Films 383, 129-131 (2001).
73. H. Stiebig, E. Moulin, and B. Rech, "Photodetectors based on amorphous and micro crystalline silicon," Thin Solid Films 515, 7522-7525 (2007).
74. Y. Vygranenko, A. Sazonov, M. Fernandes, and M. Vieira, "Photodiode with nanocrystalline Si/amorphous Si absorber bilayer," Appl Phys Lett 99 (2011).
75. M. H. Lee, C. W. Tai, and J. J. Huang, "Correlation between gap state density and bias stress reliability of nanocrystalline TFTs comparing with hydrogenated amorphous silicon TFTs," Solid State Electron 80, 72-75 (2013).
76. C. H. Lee, A. Sazonov, and A. Nathan, "High-mobility nanocrystalline silicon thin-film transistors fabricated by plasma-enhanced chemical vapor deposition," Appl Phys Lett 86 (2005).
77. M. Jana, D. Das, and A. K. Barua, "Role of hydrogen in controlling the growth of mu c-Si : H films from argon diluted SiH4 plasma," J Appl Phys 91, 5442-5448 (2002).
78. C. Smit, R. A. C. M. M. van Swaaij, H. Donker, A. M. H. N. Petit, W. M. M. Kessels, and M. C. M. van de Sanden, "Determining the material structure of microcrystalline silicon from Raman spectra," J Appl Phys 94, 3582-3588 (2003).
79. J. Zi, H. Buscher, C. Falter, W. Ludwig, K. M. Zhang, and X. D. Xie, "Raman shifts in Si nanocrystals," Appl Phys Lett 69, 200-202 (1996).
80. A. Matsuda, "Growth mechanism of microcrystalline silicon obtained from reactive plasmas," Thin Solid Films 337, 1-6 (1999).
81. J. Perrin, Y. Takeda, N. Hirano, Y. Takeuchi, Surf. Sci, 210 (1989) 114-128.
82. P. Q. Luo, Z. B. Zhou, K. Y. Chan, D. Y. Tang, R. Q. Cui, and X. M. Dou, "Gas doping ratio effects on p-type hydrogenated nanocrystalline silicon thin films grown by hot-wire chemical vapor deposition," Appl Surf Sci 255, 2910-2915 (2008).
83. R. Saleh, and N. H. Nickel, "The influence of boron concentrations on structural properties in disorder silicon films," Appl Surf Sci 254, 580-585 (2007)
84. R. Saleh, and N. H. Nickel, "Raman spectroscopy of B-doped microcrystalline silicon films," Thin Solid Films 427, 266-269 (2003).
85. Z. Li, X. W. Zhang, and G. R. Han, "Electrical and optical properties of boron-doped nanocrystalline silicon films deposited by PECVD," Phys Status Solidi A 207, 144-148 (2010).
86. S. A. Filonovich, M. Ribeiro, A. G. Rolo, and P. Alpuim, "Phosphorous and boron doping of nc-Si : H thin films deposited on plastic substrates at 150 degrees C by Hot-Wire Chemical Vapor Deposition," Thin Solid Films 516, 576-579 (2008).
87. L. Q. Guo, J. N. Ding, J. C. Yang, G. G. Cheng, and Z. Y. Ling, "Effects of high hydrogen dilution ratio on surface topography and mechanical properties of hydrogenated nanocrystalline silicon thin films," Thin Solid Films 519, 6039-6043 (2011).
88. A. M. Ali, H. Kobayashi, T. Inokuma, and A. Al-Hajry, "Morphological, luminescence and structural properties of nanocrystalline silicon thin films," Mater Res Bull 48, 1027-1033 (2013).
89. S. Kumar, J. Gope, A. Kumar, A. Parashar, C. M. S. Rauthan, and P. N. Dixit, "High Pressure Growth of Nanocrystalline Silicon Films," J Nanosci Nanotechno 8, 4211-4217 (2008).
90. R. W. Miles, K. M. Hynes, and I. Forbes, "Photovoltaic solar cells: An overview of state-of-the-art cell development and environmental issues," Prog Cryst Growth Ch 51, 1-42 (2005).
91. R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, "40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells," Appl Phys Lett 90 (2007).
92. B. Bitnar, W. Durisch, J. C. Mayor, H. Sigg, and H. R. Tschudi, "Characterisation of rare earth selective emitters for thermophotovoltaic applications," Sol Energ Mat Sol C 73, 221-234 (2002).
93. P. F. Baldasaro, J. E. Raynolds, G. W. Charache, D. M. DePoy, C. T. Ballinger, T. Donovan, and J. M. Borrego, "Thermodynamic analysis of thermophotovoltaic efficiency and power density tradeoffs," J Appl Phys 89, 3319-3327 (2001).
94. J. van der Heide, N. E. Posthuma, G. Flamand, W. Geens, and J. Poortmans, "Cost-efficient thermophotovoltaic cells based on germanium substrates," Sol Energ Mat Sol C 93, 1810-1816 (2009).
95. A. Toriumi, T. Tabata, C. H. Lee, T. Nishimura, K. Kita, and K. Nagashio, "Opportunities and challenges for Ge CMOS - Control of interfacing field on Ge is a key," Microelectron Eng 86, 1571-1576 (2009).
96. C. Y. Tsao, J. Wong, J. L. Huang, P. Campbell, D. Y. Song, and M. A. Green, "Structural dependence of electrical properties of Ge films prepared by RF magnetron sputtering," Appl Phys a-Mater 102, 689-694 (2011).
97. C. Y. Tsao, J. L. Huang, X. J. Hao, P. Campbell, and M. A. Green, "Formation of heavily boron-doped hydrogenated polycrystalline germanium thin films by co-sputtering for developing p(+) emitters of bottom cells," Sol Energ Mat Sol C 95, 981-985 (2011).
98. H. Huang, H. Shen, L. Zhang, T. Wu, L. Lu, Z. Tang, and J. Shen, "Effects of hydrogen dilution ratio on properties of Boron-doped germanium films by hot-wire chemical vapor deposition," J Optoelectron Adv M 11, 1769-1772 (2009).
99. T. H. Chang, J. Y. Chang, Y. H. Chu, C. C. Lee, I. C. Chen, and T. Li, "Investigation of the amorphous to microcrystalline phase transition of thin film prepared by electron cyclotron resonance chemical vapor deposition method," Surf Coat Tech 231, 604-607 (2013).
100. Y. Kawai, K. Uchino, H. Muta, and T. Rowf, "Development of a 915 MHz ECR plasma source," Vacuum 87, 123-127 (2013).
101. H. Fritzsche, M. Tanielian, C.C. Tsai, P.J. Gaczi, "Hydrogen content and density of plasma deposited amorphous silicon-hydrogen," J. Appl. Phys. 50, 3366 (1979).
102. C. Y. Tsao, J. W. Weber, P. Campbell, P. I. Widenborg, D. Y. Song, and M. A. Green, "Low-temperature growth of polycrystalline Ge thin film on glass by in situ deposition and ex situ solid-phase crystallization for photovoltaic applications," Appl Surf Sci 255, 7028-7035 (2009).
103. T. Narita, K. Naruse, I. Suzuki, S. Ogawa, T. Iida, N. Yoshida, T. Itoh, and S. Nonomura, "Deposition of microcrystalline Ge films using hot-wire technique without toxic gases," J Non-Cryst Solids 354, 2214-2217 (2008).
104. P. Q. Luo, Z. B. Zhou, K. Y. Chan, D. Y. Tang, R. Q. Cui, and X. M. Dou, "Gas doping ratio effects on p-type hydrogenated nanocrystalline silicon thin films grown by hot-wire chemical vapor deposition," Appl Surf Sci 255, 2910-2915 (2008).
105. R. Saleh, and N. H. Nickel, "The influence of boron concentrations on structural properties in disorder silicon films," Appl Surf Sci 254, 580-585 (2007).
106. R. Saleh, and N. H. Nickel, "Raman spectroscopy of B-doped microcrystalline silicon films," Thin Solid Films 427, 266-269 (2003).
107. A. Matsuda, "Growth mechanism of microcrystalline silicon obtained from reactive plasmas," Thin Solid Films 337, 1-6 (1999).
108. Y. Okamoto, K. Makihara, S. Higashi, and S. Miyazaki, "Formation of microcrystalline germanium (mu c-Ge : H) films from inductively coupled plasma CVD," Appl Surf Sci 244, 12-15 (2005).
109. J. Perrin, Y. Takeda, N. Hirano, Y. Takeuchi, "Sticking and recombination of the SiH3 radical on hydrogenated amorphous silicon: The catalytic effect of diborane," Surf. Sci 210, 114-128 (1989).
110. J. Fortner, R. Q. Yu, and J. S. Lannin, "Near-Surface Raman-Scattering in Germanium Clusters and Ultrathin Amorphous Films," Phys Rev B 42, 7610-7613 (1990).
111. Y. P. Chou, and S. C. Lee, "Structural, optical, and electrical properties of hydrogenated amorphous silicon germanium alloys," J Appl Phys 83, 4111-4123 (1998).
112. M. H. Brodsky, M. Cardona, and J. J. Cuomo, "Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow charge and sputtering," Physical Review B.16, 3555 (1977).
113. H. Fujiwara, and M. Kondo, "Effects of a-Si : H layer thicknesses on the performance of a-Si : H/c-Si heterojunction solar cells," J Appl Phys 101 (2007).
114. S. Cosentino, M. Miritello, I. Crupi, G. Nicotra, F. Simone, C. Spinella, A. Terrasi, and S. Mirabella, "Room-temperature efficient light detection by amorphous Ge quantum wells," Nanoscale Res Lett 8 (2013).
115. A. Marti, and G. L. Araujo, "Limiting efficiencies for photovoltaic energy conversion in multigap systems," Sol Energ Mat Sol C 43, 203-222 (1996).
116. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, "Solar cell efficiency tables (version 43)," Prog Photovoltaics 22, 1-9 (2014).
117. S. A. Ringel, J. A. Carlin, C. L. Andre, M. K. Hudait, M. Gonzalez, D. M. Wilt, E. B. Clark, P. Jenkins, D. Scheiman, A. Allerman, E. A. Fitzgerald, and C. W. Leitz, "Single-junction InGaP/GaAs solar cells grown on Si substrates with SiGe buffer layers," Prog Photovoltaics 10, 417-426 (2002).
118. C. L. Andre, J. A. Carlin, J. J. Boeckl, D. M. Wilt, M. A. Smith, A. J. Pitera, M. L. Lee, E. A. Fitzgerald, and S. A. Ringel, "Investigations of high-performance GaAs solar cells grown on Ge-Si1-xGex-Si substrates," Ieee T Electron Dev 52, 1055-1060 (2005).
119. R. Ginige, B. Corbett, M. Modreanu, C. Barrett, J. Hilgarth, G. Isella, D. Chrastina, and H. von Kanel, "Characterization of Ge-on-Si virtual substrates and single junction GaAs solar cells," Semicond Sci Tech 21, 775-780 (2006).
120. M. R. Lueck, C. L. Andre, A. J. Pitera, M. L. Lee, E. A. Fitzgerald, and S. A. Ringel, "Dual junction GaInP/GaAs solar cells grown on metamorphic SiGe/Si substrates with high open circuit voltage," Ieee Electr Device L 27, 142-144 (2006)
121. L. Hsu, and W. Walukiewicz, "Modeling of InGaN/Si tandem solar cells," J Appl Phys 104 (2008).
122. J. Michel, J. F. Liu, and L. C. Kimerling, "High-performance Ge-on-Si photodetectors," Nat Photonics 4, 527-534 (2010).
123. J. M. Hartmann, A. Abbadie, A. M. Papon, P. Holliger, G. Rolland, T. Billon, J. M. Fedeli, M. Rouviere, L. Vivien, and S. Laval, "Reduced pressure-chemical vapor deposition of Ge thick layers on Si(001) for 1.3-1.55-mu m photodetection," J Appl Phys 95, 5905-5913 (2004).
124. J. A. Wang, and S. Lee, "Ge-Photodetectors for Si-Based Optoelectronic Integration," Sensors-Basel 11, 696-718 (2011).
125. F. Liu, X. C. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, "Ge-on-Si laser operating at room temperature," Optics Letters, vol. 35 (5), pp. 679-681, 2010.
126. Y. Chriqui, L. Largeau, G. Patriarche, G. Saint-Girons, S. Bouchoule, I. Sagnes, D. Bensahel, Y. Campidelli, and O. Kermarreeb, "Direct growth of GaAs-based structures on exactly (001)-oriented Ge/Si virtual substrates: reduction of the structural defect density and observation of electroluminescence at room temperature under CW electrical injection," J Cryst Growth 265, 53-59 (2004).
127. D. O′Mahony, W. Zimmerman, S. Steffen, J. Hilgarth, P. Maaskant, R. Ginige, L. Lewis, B. Lambert, and B. Corbett, "Free-standing gallium nitride Schottky diode characteristics and stability in a high-temperature environment," Semicond Sci Tech 24 (2009).
128. D. H. Choi, J. S. Harris, E. Kim, P. C. McIntyre, J. Cagnon, and S. Stemmer, "High-quality III-V semiconductor MBE growth on Ge/Si virtual substrates for metal-oxide-semiconductor device fabrication," J Cryst Growth 311, 1962-1971 (2009).
129. H. Tanoto, S. F. Yoon, W. K. Loke, K. P. Chen, E. A. Fitzgerald, C. Dohrman, and B. Narayanan, "Heteroepitaxial growth of GaAs on (100) Ge/Si using migration enhanced epitaxy," J Appl Phys 103 (2008).
130. S. Luryi, A. Kastalsky and J. C. Bean, "New infrared detector on a silicon chip," IEEE Trans on Electron Devices 31 (9), 1135-1139 (1984).
131. E. A. Fitzgerald, "Dislocations in Strained-Layer Epitaxy - Theory, Experiment, and Applications," Mater Sci Rep 7, 91-142 (1991).
132. M. T. Currie, S. B. Samavedam, T. A. Langdo, C. W. Leitz, and E. A. Fitzgerald, "Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing," Appl Phys Lett 72, 1718-1720 (1998).
133. S. Jongthammanurak, J. F. Liu, K. Wada, D. D. Cannon, D. T. Danielson, D. Pan, L. C. Kimerling, and J. Michel, "Large electro-optic effect in tensile strained Ge-on-Si films," Appl Phys Lett 89 (2006).
134. Y. Takada, J. Osaka, Y. Ishikawa, and K. Wada, "Effect of Mesa Shape on Threading Dislocation Density in Ge Epitaxial Layers on Si after Post-Growth Annealing," Jpn J Appl Phys 49 (2010).
135. V. A. Shah, A. Dobbie, M. Myronov, and D. R. Leadley, "High quality relaxed Ge layers grown directly on a Si(001) substrate," Solid State Electron 62, 189-194 (2011).
136. D. Chen, Z. Y. Xue, X. Wei, G. Wang, L. Ye, M. Zhang, D. W. Wang, and S. Liu, "Ultralow temperature ramping rate of LT to HT for the growth of high quality Ge epilayer on Si (100) by RPCVD," Applied Surface Science 299, 1-5 (2014).
137. V. Sorianello, L. Colace, G. Assanto, and M. Nardone, "Micro-Raman characterization of Germanium thin films evaporated on various substrates," Microelectron Eng 88, 492-495 (2011).
138. V. Sorianello, A. De Iacovo, L. Colace, A. Fabbri, L. Tortora, E. Buffagni, and G. Assanto, "High responsivity near-infrared photodetectors in evaporated Ge-on-Si," Appl Phys Lett 101 (2012).
139. Y. Kawai, K. Uchino, H. Muta, and T. Rowf, "Development of a 915 MHz ECR plasma source," Vacuum 87, 123-127 (2013).
140. T. H. Chang, J. Y. Chang, Y. H. Chu, C. C. Lee, I. C. Chen, and T. Li, "Investigation of the amorphous to microcrystalline phase transition of thin film prepared by electron cyclotron resonance chemical vapor deposition method," Surface and Coatings Technology 231, 604-607 (2013).
141. . H. Chang, C. Chang, Y. H. Chu, C. C. Lee, J. Y. Chang, I. C. Chen, and T. Li, "Low temperature growth of highly conductive boron-doped germanium thin films by electron cyclotron resonance chemical vapor deposition," Thin Solid Films 551, 53-56 (2014).
142. J. Platen, B. Selle, I. Sieber, S. Brehme, U. Zeimer, and W. Fuhs, "Low-temperature epitaxial growth of Si by electron cyclotron resonance chemical vapor deposition," Thin Solid Films 381 (1), 22-30 (2001).
143. R. Ichikawa, S. Takita, Y. Ishikawa, and K. Wada, "Germanium as a Material to Enable Silicon Photonics," Silicon Photonics Ii: Components and Integration 119, 131-141 (2011)
144. B. von Blanckenhagen, D. Tonova, and J. Ullmann, "Application of the Tauc-Lorentz formulation to the interband absorption of optical coating materials," Applied Optics, 41 (16) 3137-3141 (2002).
145. D. E. Aspnes, "Optical properties of thin films," Thin Solid Films 89, 249-262, (1982).
146. C. Pickering, R. T. Carline, D. J. Robbins, W. Y. Leong, S. J. Barnett, A. D. Pitt, and A. G. Cullis, "Spectroscopic Ellipsometry Characterization of Strained and Relaxed Si1-Xgex Epitaxial Layers," Journal of Applied Physics 73 (1), 239-250, (1993).
147. A. Matsuda, "Microcrystalline silicon. Growth and device application," J Journal of Non-Crystalline Solids 338, 1-12 (2004).
148. H. C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, "High-quality Ge epilayers on Si with low threading-dislocation densities," Applied Physics Letters 75 (19), 2909-2911 (1999).
149. S. G. Thomas, S. Bharatan, R. E. Jones, R. Thoma, T. Zirkle, N. V. Edwards, R. Liu, X. D. Wang, Q. H. Xie, C. Rosenblad, J. Ramm, G. Isella, and H. Von Kanel, "Structural characterization of thick, high-quality epitaxial Ge on Si substrates grown by low-energy plasma-enhanced chemical vapor deposition," Journal of Electronic Materials 32 (9), 976-980 (2003).
150. P. H. Tan, K. Brunner, D. Bougeard, and G. Abstreiter, "Raman characterization of strain and composition in small-sized self-assembled Si/Ge dots," Phys Rev B 68 (2003).
151. J. L. Liu, C. D. Moore, G. D. U′Ren, Y. H. Luo, Y. Lu, G. Jin, S. G. Thomas, M. S. Goorsky, and K. L. Wang, "A surfactant-mediated relaxed Si0.5Ge0.5 graded layer with a very low threading dislocation density and smooth surface," Appl Phys Lett 75, 1586-1588 (1999).
152. Y. Ohmachi, T. Nishioka, and Y. Shinoda, "The heteroepitaxy of Ge on Si (100) by vacuum evaporation," Journal of Applied Physics 54, 5466-5469 (1983).
153. P. Stulik, and J. Singh, "Optical modelling of a single-junction p-i-n type and tandem structure amorphous silicon solar cells with perfect current matching," Sol Energ Mat Sol C 46, 271-288 (1997).
154. F. Meillaud, A. Shah, C. Droz, E. Vallat-Sauvain, and C. Miazza, "Efficiency limits for single junction and tandem solar cells," Sol Energ Mat Sol C 90, 2952-2959 (2006). |