博碩士論文 992206047 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:90 、訪客IP:3.22.181.148
姓名 張登翔(Teng-Hsiang Chang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 新式薄膜成長及其應用於矽基太陽能電池
(New Thin Films Growth and Application for Silicon Based Solar Cells Development)
相關論文
★ 富含矽奈米結構之氧化矽薄膜之成長與其特性研究★ 導波共振光學元件應用於生物感測器之研究
★ 具平坦化側帶之超窄帶波導模態共振濾波器研究★ 低溫成長鍺薄膜於單晶矽基板上之研究
★ 矽鍺薄膜及其應用於光偵測器之研製★ 低溫製備磊晶鍺薄膜及矽基鍺光偵測器
★ 整合慣性感測元件之導波矽基光學平台研究★ 矽基光偵測器研製與整合於光學波導系統
★ 光學滑鼠用之光學元件設計★ 高效率口袋型LED 投影機之研究
★ 在波長為532nm時摻雜鉬之鈦酸鋇單晶性質研究★ 極化繞射光學元件在高密度光學讀取頭上之應用研究
★ 不同溫度及波長之摻銠鈦酸鋇單晶性質研究★ 經氣氛處理之鈦酸鋇單晶其光折變性質及電荷移轉與波長的關係
★ 在不同溫度時氣氛處理鈦酸鋇單晶性質之比較★ 摻銠鈦酸鋇單晶的氧化還原與光折變性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-6-1以後開放)
摘要(中) 近十年來科技發展快速,能源的需求日益提升,但傳統能源如石油並非取之不盡,因此再生能源的發展一直是人們所關心的,其中無污染的太陽能電池更是指標性的再生能源。眾多太陽能電池中,矽基太陽能電池俱有低成本,成熟技術的優點,目前市占比高達90 %,2015異質接面太陽能電池在結合背電極技術後效率已突破25 %,仍然是太陽能電池市場中的主流,也受到各研究團隊的矚目。在此論文中,我們以自主性開發且具有高密度電漿之電子迴旋共振化學氣相沈積法開發矽、鍺、碳化矽等新式薄膜並應用其開發新結構矽基太陽能電池及新創三五族堆疊矽太陽能電池,以新材料為基礎提出矽基太陽能電池轉換效率之方法與概念。首先我們完成了矽薄膜相圖驗證電子迴旋共振化學氣相沈積法高密度電漿的特性。接著根據此結果進一步調整製程參數沈積碳化矽及奈米晶矽薄膜應用於矽基太陽能電池之開發。除此之外, 180度超低溫成長40 nm薄型且平坦之磊晶鍺更是本論文之一大亮點,該成果突破了傳統高溫製程,開創了新創之三五族堆疊矽太陽能電池的應用,經由理論計算,該類性電池之理論效率可超過30 %。
本研究使用之電子迴旋共振化學氣相沈積法除了俱有高密度電漿的特性,更因為其是自主開發之系統,因此有非常高度的彈性調整以利發展新式材料。在此研究的第一部分我們完成基本矽薄膜的製備與研究,並製作出薄膜的成長相圖,本方法可在較低的氫稀釋比(H2/SiH4= 1)及低溫(180 ˚C)下沈積高結晶率之矽薄膜以驗證此方法俱有高密度電漿、高解離率的特性。接著我們沈積並研究碳化矽及奈米晶矽薄膜特性並應用其於新型矽基太陽能電池。本質碳化矽薄膜相較傳統非晶矽薄膜有較低的吸收係數,可降低入光面的光學損失,同時該薄膜俱有極佳的鈍化效果,表面復合速率達21 cm/sec、有效載子生命週期達680 sec的水準;也因為高密度電漿的特性,低溫製程符合異質接面太陽能電池的需求。在硼摻雜奈米晶矽的成長方面,奈米晶矽的形成可提升薄膜的導電率以降低其與透明導電膜之接觸電阻,更重要的是其非晶態的存在使其仍俱有鈍化的效果。最後製作銀/氧化銦錫/p型奈米晶矽/i型碳化矽/n型矽基板/銀之新型矽基異質接面太陽能電池,於此簡單平面的結構轉換效率可達13.66 % (開路電壓=518 mV, 短路電流= 37.95 mA/cm2, 填充因子=69.5 %)。
矽基磊晶鍺薄膜多元的應用如:光偵測器、雷射、太陽能電池、及積體化三五族元件於矽基板上引起了多方的深入研究探討。一般傳統磊晶製程如分子束磊晶法或是超高真空化學氣相沉積法往往需要超過600 ˚C的高溫及200 nm的厚度。但是過高的溫度會造成整合性及高熱預算等重重限制。而高密度電漿之電子迴旋共振化學氣相沈積法則可解決此問題。我們首先成長高導電率之硼摻雜鍺薄膜以了解其成長機制,接著以180˚C超低溫開發僅有40 nm磊晶鍺於矽基板上,其除了有不錯的磊晶結構(X射線半高寬=683 arcsec),更有著非常平坦之表面粗糙度(粗糙度=0.342 nm)。可解決三五族與矽材料間晶格不匹配的問題以開發新創三五族堆疊矽太陽能電池,更重要的是其極薄的厚度可避免本身的吸收造成的光損失。本結果突破傳統製程高溫、厚膜的限制,開創了矽基磊晶鍺薄膜在太陽能電池元件中的新應用。經由理論計算,此型新創三五族堆疊矽太陽能轉換效率可超過30 %(開路電壓=2.19 V, 短路電流= 14.78 mA/cm2, 填充因子=93 %),而40 nm的鍺緩衝層則會造成6.36 mA/cm2的短路電流損失。
摘要(英) With the rapid development of science and technology, the sustainable energies get more and more attention, and the photovoltaic without pollutions is regard as the most important sustainable energy in the future. In the many kinds of solar cells, Si based solar cell has advantages of low cost and mature technology, and the Si hetero-junction (SHJ) solar cell can achieve the highest efficiency of 25.6 % in 2015. In this dissertation, we use homemade electron cyclotron resonance chemical vapor deposition (ECR-CVD) method with high plasma density characteristic to develop several films such as: amorphous hydrogenated silicon carbide (a-Si1-xCx:H), boron doped hydrogenated nanocrystalline silicon (B-dopd nc-Si:H), and epitaxial germanium (epi-Ge) for SHJ solar cell application and novel III-V/Si tandem solar cell development. At first, we complete Si:H phased diagram to demonstrate the high plasma density of ECR-CVD, which is a significant result to further adjust growth parameters to develop new thin films. Then we grow and investigate structural, optical, electrical, and passivation qualities of a-Si1-xCx:H and B-dopd nc-Si:H. We provide another choice of passivation and emitter layers for a SHJ solar cell. Furthermore, the Ge films development opens the newly created application for III-V/Si solar cell development. Epitaxial 40 nm thick Ge on Si with smooth surface can be grown at an ultra-low temperature of 180 ˚C. Such a thin Ge on Si is suitable being the buffer layer for III-V/Si tandem solar cell with theoretical conversion efficiency above 30 %.
Si:H film phase diagram has been completed by ECR-CVD at a low temperature of 180 ˚C. The amorphous to microcrystalline phase transition occurs at a lower hydrogen dilution ratio (H2/SiH4= 1) due to the high plasma density of ECR-CVD, compare with conventional PECVD process with higher dilution ratio (H2/SiH4~ 10). Then we introduce the CH4 and B2H6 gases to further deposit a-Si1-xCx:H and B-doped nc-Si:H for SHJ solar cell, respectively. The typical structure of SHJ solar cell is used a-Si:H as passivation and emitter layers grown at a low temperature (< 200 ˚C) by PECVD. However, the bandgap of a-Si:H is about 1.85 eV which will reduce photo generation at the short wavelength. The a-Si1-xCx:H film has a higher optical bandgap is a good solution, but it usually needs a high temperature above 300 ˚C to achieve a high quality by PECVD. We can use low temperature of 180 ˚C, satisfied SHJ solar cell requirement, to obtain an a-Si1-xCx:H film for a passivation layer. The film, having an excellent passivation quality (Lifetime= 680 sec, surface recombination velocity= 21 cm/sec) and lower absorption coefficient than a-Si:H, can keep the Voc performance and reduce the optical loss in a passivation layer meanwhile. In the other hand, the a-Si:H has a poor conductive property so that the SHJ solar cell needs a highly conductive transparent conductive oxide layer to reduce resistance loss. For the B-doped nc-Si:H deposited by ECR-CVD, the formation of nanocrystal results a high conductivity for resistance reduction, and the a-Si:H matrix passivates the p/i interface for Voc preservation. We also apply them to fabricate planar Ag grid/ITO/nc-Si:H(p)/a-Si1-xCx:H (i)/c-Si(n)/Ag SHJ solar cell without back surface field and passivation layer at rear side, and the conversion efficiency is 13.66 % (Voc= 518 mV, Jsc= 37.95 mA/cm2, FF= 69.5 %).
Ge on Si is attracted attention recently because of several applications like: infrared photodetector, Ge laser, solar cell, and monolithic integration of III-V semiconductor devices on c-Si. Usually, the growth of epi-Ge on Si needs high growth temperature (> 600 ˚C) and thick thickness (> 200 nm) by conventional epitaxy process like ultra-high vacuum chemical vapor deposition (UHV-CVD) or molecular beam epitaxy (MBE). However, the high temperature process limits the materials or devices integration, and enhances the thermal budget. ECR-CVD method with high plasma density can solve these problems. We first grow highly conductive B-doped Ge:H films to realize the growth mechanism of it, and then successfully grow a 40 nm thick Ge on Si at an ultra-low temperature of 180 ˚C. The film, having a good crystal quality (XRD FWHM= 683 arcsec) and smooth surface (RMS roughness= 0.342 nm), is suitable being a buffer layer for III-V/Si tandem solar cell to solve lattice mismatched between III-V and Si materials. More importantly, the thin thickness of 40 nm can reduce the optical loss in a buffer layer, that the Ge has a lower bandgap 0.66 eV than Si. Different to the conventional thick Ge on Si application, the thin Ge on Si developed by ECR-CVD with high plasma density starts a new concept of III-V/Si tandem solar cell. By theoretically calculation, the efficiency can achieve above 30 % (Voc= 2.19 V, Jsc= 14.78 mA/cm2, FF= 93 %).
關鍵字(中) ★ 太陽能電池
★ 薄膜
★ 矽基太陽能電池
★ 鍺薄膜
關鍵字(英) ★ Solar Cell
★ Thin Film
★ Si based solar cell
★ Ge thin film
論文目次 Abstract ....................................................................................................................................... i
Abstract in Chinese ................................................................................................................... iv
Acknowledgement .................................................................................................................... vi
Content..................................................................................................................................... vii
List of Figures ......................................................................................................................... viii
List of Tables........................................................................................................................... xiii
Chapter 1 Introduction ................................................................................................................1
Chapter 2 Investigation of the Amorphous to Microcrystalline Phase Transition of Silicon Thin Film Prepared by Electron Cyclotron Resonance Chemical Vapor Deposition Method .23
Chapter 3 Crystalline Silicon Interface Passivation Improvement with a-Si1-xCx:H and Its Application in Hetero-junction Solar Cells with Intrinsic Layer..............................................35
Chapter 4 Deposition of Highly Conductive Boron-doped Hydrogenated Nanocrystalline Silicon Thin Films and Their Application for Silicon Hetero-junction Solar Cells..................49
Chapter 5 Low Temperature Growth of Highly Conductive Boron-doped Germanium Thin Films by Electron Cyclotron Resonance Chemical Vapor Deposition .....................................64
Chapter 6 Low Temperature (180 °C) Growth of Smooth-Surface and 40 nm Thick Ge on Si and Theoretical Performance of III-V/Ge buffer/Si Tandem Solar Cell...................................77
Chapter 7 Summary and Future Work ....................................................................................100 Chapter 8 References ..............................................................................................................106 Chapter 9 Publication List ......................................................................................................118
參考文獻 1. http://euanmearns.com/global-energy-trends-bp-statistical-review-2014/
2. http://www.nrel.gov/ncpv/
3. http://news.panasonic.com/press/news/official.data/data.dir/2013/02/en130212-7/en130212-7.html
4. http://www.pv-tech.org/news/back_contact_hit_solar_cell_from_panasonic_pushes_efficiency_record_to_25.6
5. Bloomberg, New Energy Finance & pv.energytrend.com
6. M. Bender, W. Seelig, C. Daube, H. Frankenberger, B. Ocker, and J. Stollenwerk, "Dependence of oxygen flow on optical and electrical properties of DC-magnetron sputtered ITO films," Thin Solid Films 326, 72-77 (1998).
7. P S. Miyajima, M. Sawamura, A. Yamada, and M. Konagai, "Properties of n-type hydrogenated nanocrystalline cubic silicon carbide films deposited by VHF-PECVD at a low substrate temperature," J Non-Cryst Solids 354, 2350-2354 (2008).
8. Y. Tsunomura, Y. Yoshimine, M. Taguchi, T. Baba, T. Kinoshita, H. Kanno, H. Sakata, E. Maruyama, and M. Tanaka, "Twenty-two percent efficiency HIT solar cell," Sol Energ Mat Sol C 93, 670-673 (2009).
9. A. Descoeudres, L. Barraud, S. De Wolf, B. Strahm, D. Lachenal, C. Guerin, Z. C. Holman, F. Zicarelli, B. Demaurex, J. Seif, J. Holovsky, and C. Ballif, "Improved amorphous/crystalline silicon interface passivation by hydrogen plasma treatment," Appl Phys Lett 99 (2011).
10. K. S. Ji, J. Choi, H. Yang, H. M. Lee, and D. Kim, "A study of crystallinity in amorphous Si thin films for silicon heterojunction solar cells," Sol Energ Mat Sol C 95, 203-206 (2011).
11. A. Descoeudres, L. Barraud, R. Bartlome, G. Choong, S. De Wolf, F. Zicarelli, and C. Ballif, "The silane depletion fraction as an indicator for the amorphous/crystalline silicon interface passivation quality," Appl Phys Lett 97 (2010).
12. N. Hernandez-Como, and A. Morales-Acevedo, "Simulation of hetero-junction silicon solar cells with AMPS-1D," Sol Energ Mat Sol C 94, 62-67 (2010).
13. I. Mathews, D. O′Mahony, B. Corbett, and A. P. Morrison, " Theoretical performance of multi-junction solar cells combining III-V and Si materials," Optics Express 20 (S5), A754-A764 (2012).
14. R. Ichikawa, S. Takita, Y. Ishikawa, and K. Wada, "Germanium as a Material to Enable Silicon Photonics," Silicon Photonics Ii: Components and Integration 119, 131-141 (2011)
15. M. R. Lueck, C. L. Andre, A. J. Pitera, M. L. Lee, E. A. Fitzgerald, and S. A. Ringel, "Dual Junction GaInP/GaAs Solar Cells Grown on Metamorphic SiGe/Si Substrates With High Open Circuit Voltage," IEEE Electron Device Lettters 27 (3), 142-144 (2006).
16. J. Faucher, A. Gerger, S. Tomasulo, C. Ebert, A. Lochtefeld, A. Barnett, and M. L. Lee, "Single-junction GaAsP solar cells grown on SiGe graded buffers on Si," Appl. Pysic Lettters 103, 191901 (2013).
17. D. E. Carlson and C. R. Wronski, "Amorphous silicon solar cell," Appl. Phys. Lett. 28, 671 (1976).
18. P.G. Le Comber and W.E. Spear, in: J. PanKore(Eds.), Semiconductor and semimetals, New York, 1984, Part D, Chapter 6.
19. T. Lagarde, Y. Arnal, A. Lacoste, and J. Pelletier, "Determination of the EEDF by Langmuir probe diagnostics in a plasma excited at ECR above a multipolar magnetic field," Plasma Sources Sci T 10, 181-190 (2001)
20. P. Bulkin, N. Bertrand, B. Drevillon, J. C. Rostaing, F. Delmotte, M. C. Hugon, and B. Agius, "Plasma enhanced chemical vapour deposition of silica thin films in an integrated distributed electron cyclotron resonance reactor," Thin Solid Films 308, 63-67 (1997).
21. A. Lacoste, T. Lagarde, S. Bechu, Y. Arnal, and J. Pelletier, "Multi-dipolar plasmas for uniform processing: physics, design and performance," Plasma Sources Sci T 11, 407-412 (2002).
22. F. S. Pool, "Nitrogen plasma instabilities and the growth of silicon nitride by electron cyclotron resonance microwave plasma chemical vapor deposition," J Appl Phys 81, 2839-2846 (1997).
23. R. Nozawa, H. Takeda, M. Ito, M. Hori, and T. Goto, "In situ observation of hydrogenated amorphous silicon surfaces in electron cyclotron resonance hydrogen plasma annealing," J Appl Phys 85, 1172-1177 (1999).
24. K. Chew, Rusli, M. B. Yu, S. F. Yoon, V. Ligatchev, and J. Ahn, "Density of gap states in amorphous hydrogenated silicon carbide determined using high-frequency capacitance-voltage measurement technique," Diam Relat Mater 10, 1273-1277 (2001).
25. E. Vallat-Sauvain, U. Kroll, J. Meier, A. Shah, and J. Pohl, "Evolution of the microstructure in microcrystalline silicon prepared by very high frequency glow-discharge using hydrogen dilution," J Appl Phys 87, 3137-3142 (2000).
26. A.H. Mahan, D.L. Williamson, B.P. Nelson, and R.S. Crandall, Solar Cells 21, 12024 (1987).
27. M. H. Brodsky, M. Cardona, and J. J. Cuomo, "Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow charge and sputtering," Physical Review B.16, 3555 (1977).
28. A. H. Mahan, J. Yang, S. Guha, and D. L. Williamson, "Structural changes in a-Si:H film crystallinity with high H dilution," Phys Rev B 61, 1677-1680 (2000).
29. C. Smit, R. A. C. M. M. van Swaaij, H. Donker, A. M. H. N. Petit, W. M. M. Kessels, and M. C. M. van de Sanden, "Determining the material structure of microcrystalline silicon from Raman spectra," J Appl Phys 94, 3582-3588 (2003).
30. H. Kakiuchi, M. Matsumoto, Y. Ebata, H. Ohmi, K. Yasutake, K. Yoshii, and Y. Mori, "Characterization of intrinsic amorphous silicon layers for solar cells prepared at extremely high rates by atmospheric pressure plasma chemical vapor deposition," J Non-Cryst Solids 351, 741-747 (2005).
31. Y. Tsunomura, Y. Yoshimine, M. Taguchi, T. Baba, T. Kinoshita, H. Kanno, H. Sakata, E. Maruyama, and M. Tanaka, "Twenty-two percent efficiency HIT solar cell," Sol Energ Mat Sol C 93, 670-673 (2009).
32. J. I. Pankove and M. L. Tarng,"Amorphous silicon as a passivant for crystalline silicon," Appl. Phys. Lett. 34, 156 (1979).
33. S. De Wolf, S. Olibet, and C. Ballif, "Stretched-exponential a-Si : H/c-Si interface recombination decay," Appl Phys Lett 93 (2008).
34. T. F. Schulze, H. N. Beushausen, C. Leendertz, A. Dobrich, B. Rech, and L. Korte, "Interplay of amorphous silicon disorder and hydrogen content with interface defects in amorphous/crystalline silicon heterojunctions," Appl Phys Lett 96 (2010).
35. J. W. A. Schuttauf, K. H. M. van der Werf, I. M. Kielen, W. G. J. H. M. van Sark, J. K. Rath, and R. E. I. Schropp, "Excellent crystalline silicon surface passivation by amorphous silicon irrespective of the technique used for chemical vapor deposition," Appl Phys Lett 98 (2011).
36. I. Martin, M. Vetter, A. Orpella, J. Puigdollers, A. Cuevas, and R. Alcubilla, "Surface passivation of p-type crystalline Si by plasma enhanced chemical vapor deposited amorphous SiCx : H films," Appl Phys Lett 79, 2199-2201 (2001).
37. I. Martin, M. Vetter, A. Orpella, C. Voz, J. Puigdollers, and R. Alcubilla, "Surface passivation of n-type crystalline Si by plasma-enhanced-chemical-vapor-deposited amorphous SiCx : H and amorphous SiCxNy : H films," Appl Phys Lett 81, 4461-4463 (2002).
38. I. Martin, M. Vetter, M. Garin, A. Orpella, C. Voz, J. Puigdollers, and R. Alcubilla, "Crystalline silicon surface passivation with amorphous SiCx : H films deposited by plasma-enhanced chemical-vapor deposition," J Appl Phys 98 (2005).
39. Y. Kawai, K. Uchino, H. Muta, and T. Rowf, "Development of a 915 MHz ECR plasma source," Vacuum 87, 123-127 (2013).
40. M. Vetter, I. Martin, R. Ferre, M. Garin, and R. Alcubilla, "Crystalline silicon surface passivation by amorphous silicon carbide films," Sol Energ Mat Sol C 91, 174-179 (2007).
41. J. K. Seo, Y. H. Joung, Y. Park, and W. S. Choi, "Substrate temperature effect on the SiC passivation layer synthesized by an RF magnetron sputtering method," Thin Solid Films 519, 6654-6657 (2011).
42. J. K. Seo, K. H. Ko, W. S. Choi, M. Park, J. H. Lee, and J. S. Yi, "The effect of deposition RF power on the SiC passivation layer synthesized by an RF magnetron sputtering method," J Cryst Growth 326, 183-185 (2011).
43. J. Damon-Lacoste, and P. R. I. Cabarrocas, "Toward a better physical understanding of a-Si:H/c-Si heterojunction solar cells," J Appl Phys 105 (2009).
44. C. W. Teplin, D. H. Levi, E. Iwaniczko, K. M. Jones, J. D. Perkins, and H. M. Branz, "Monitoring and modeling silicon homoepitaxy breakdown with real-time spectroscopic ellipsometry," J Appl Phys 97 (2005).
45. H. Fujiwara, and M. Kondo, "Impact of epitaxial growth at the heterointerface of a-Si : H/c-Si solar cells," Appl Phys Lett 90 (2007).
46. T. H. Wang, E. Iwaniczko, M. R. Page, D. H. Levi, Y. Yan, H. M. Branz, and Q. Wang, "Effect of emitter deposition temperature on surface passivation in hot-wire chemical vapor deposited silicon heterojunction solar cells," Thin Solid Films 501, 284-287 (2006).
47. G. E. Jellison, and F. A. Modine, "Parameterization of the optical functions of amorphous materials in the interband region," Appl Phys Lett 69, 371-373 (1996).
48. H. Fujiwara, J. Koh, P. I. Rovira, and R. W. Collins, "Assessment of effective-medium theories in the analysis of nucleation and microscopic surface roughness evolution for semiconductor thin films," Phys. Rev. B 61(16), 10832–10844 (2000).
49. T. Friessnegg, M. Boudreau, P. Mascher, A. Knights, P. J. Simpson, and W. Puff, "Defect structure of carbon rich a-SiC : H films and the influence of gas and heat treatments," J Appl Phys 84, 786-795 (1998).
50. E. Gat, M. A. Elkhakani, M. Chaker, A. Jean, S. Boily, H. Pepin, J. C. Kieffer, J. Durand, B. Cros, F. Rousseaux, and S. Gujrathi, "A Study of the Effect of Composition on the Microstructural Evolution of a-Sixcl-X - H Pecvd Films - Ir Absorption and Xps Characterizations," J Mater Res 7, 2478-2487 (1992).
51. I. Atilgan, O. Ozdemir, B. Akaoglu, K. Sel, and B. Katircioglu, "Transport studies of carbon-rich a-SiCx : H film through admittance and deep-level transient spectroscopy measurements," Philos Mag 86, 2771-2796 (2006).
52. D. K. Basa, and F. W. Smith, "Annealing and Crystallization Processes in a Hydrogenated Amorphous Si-C Alloy Film," Thin Solid Films 192, 121-133 (1990).
53. K. Mui, D.K.B., F.W. Smith and Reed Corderman, "Optical constants of a series of amorphous hydrogenated silicon-carbon alloy films: Dependence of optical response on film microstructure and evidence for homogeneous chemical ordering," Physical Review B 35 (15), 8089-8102 (1987).
54. W.A. Lanford and M.J. Rand, "The hydrogen content of plasma-deposited silicon nitride," Journal of Applied Physics 49 (4), 2473–2477 (1978).
55. E. Gat, M. A. Elkhakani, M. Chaker, A. Jean, S. Boily, H. Pepin, J. C. Kieffer, J. Durand, B. Cros, F. Rousseaux, and S. Gujrathi, "A Study of the Effect of Composition on the Microstructural Evolution of a-Sixcl-X - H Pecvd Films - Ir Absorption and Xps Characterizations," J Mater Res 7, 2478-2487 (1992).
56. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, "Solar cell efficiency tables (version 43)," Prog Photovoltaics 22, 1-9 (2014).
57. T. H. Chang, Y. H. Chu, C. C. Lee, and J. Y. Chang, "Crystalline silicon interface passivation improvement with a-Si1-xCx:H and its application in hetero-junction solar cells with intrinsic layer," Appl Phys Lett 101 (2012).
58. S. Y. Lien, and D. S. Wuu, "Simulation and Fabrication of Heterojunction Silicon Solar Cells from Numerical Computer and Hot-Wire CVD," Prog Photovoltaics 17, 489-501 (2009).
59. J. Sritharathikhun, H. Yamamoto, S. Miyajima, A. Yamada, and M. Konagai, "Optimization of Amorphous Silicon Oxide Buffer Layer for High-Efficiency p-Type Hydrogenated Microcrystalline Silion Oxide/n-Type Crystalline Silicon Heterojunction Solar Cells," Jpn J Appl Phys 47, 8452-8455 (2008).
60. S. Inthisang, K. Sriprapha, S. Miyajima, A. Yamada, and M. Konagai, "Hydrogenated Amorphous Silicon Oxide Solar Cells Fabricated near the Phase Transition between Amorphous and Microcrystalline Structures," Jpn J Appl Phys 48 (2009).
61. K. Sriprapha, N. Sitthiphol, P. Sangkhawong, V. Sangsuwan, A. Limmanee, and J. Sritharathikhun, "p-Type hydrogenated silicon oxide thin film deposited near amorphous to microcrystalline phase transition and its application to solar cells," Curr Appl Phys 11, S47-S49 (2011).
62. C. Banerjee, K. L. Narayanan, N. K. Haga, J. Sritharathikhun, S. Miyajima, A. Yamada, and M. Konagai, "Fabrication of microcrystalline cubic silicon carbide/crystalline silicon heterojunction solar cell by hot wire chemical vapor deposition," Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers 46, 1-6 (2007).
63. C. T. Lee, L. H. Tsai, Y. H. Lin, and G. R. Lin, "A Chemical Vapor Deposited Silicon Rich Silicon Carbide P-N Junction Based Thin-Film Photovoltaic Solar Cell," Ecs J Solid State Sc 1, Q144-Q148 (2012).
64. F. Zignani, A. Desalvo, E. Centurioni, D. Iencinella, R. Rizzoli, C. Summonte, and A. Migliori, "Silicon heterojunction solar cells with p nanocrystalline thin emitter on monocrystalline substrate," Thin Solid Films 451, 350-354 (2004).
65. W. S. Yan, D. Y. Wei, S. Xu, and H. P. Zhou, "Highly doped p-type nanocrystalline silicon thin films fabricated by low-frequency inductively coupled plasma without H-2 dilution," J Appl Phys 110 (2011).
66. H. Y. Mao, S. Y. Lo, D. S. Wuu, B. R. Wu, S. L. Ou, H. Y. Hsieh, and R. H. Horng, "Hot-wire chemical vapor deposition and characterization of p-type nanocrystalline Si films for thin film photovoltaic applications," Thin Solid Films 520, 5200-5205 (2012).
67. V. S. Waman, M. M. Kamble, S. S. Ghosh, A. Mayabadi, V. G. Sathe, H. M. Pathan, S. D. Shinde, K. P. Adhi, and S. R. Jadkar, "Highly conducting phosphorous doped n-type nc-Si:H films by HW-CVD for c-Si heterojunction solar cells," Rsc Adv 2, 9873-9880 (2012).
68. F. Zignani, A. Desalvo, E. Centurioni, D. Iencinella, R. Rizzoli, C. Summonte, and A. Migliori, "Silicon heterojunction solar cells with p nanocrystalline thin emitter on monocrystalline substrate," Thin Solid Films 451, 350-354 (2004).
69. E. Spanakis, E. Stratakis, P. Tzanetakis, H. Fritzsche, S. Guha, and J. Yang, "Light induced stress in a-Si1-xGex : H alloys and its correlation with the Staebler-Wronski effect," J Non-Cryst Solids 299, 521-524 (2002)
70. R. E. I. Schropp, H. Li, R. H. Franken, J. K. Rath, C. H. M. van der Werf, M. A. Schuttauf, and R. L. Stolk, "Nanostructured thin films for multiband-gap silicon triple junction solar cells," Thin Solid Films 516, 6818-6823 (2008).
71. B. J. Yan, G. Z. Yue, X. X. Xu, J. Yang, and S. Guha, "High efficiency amorphous and nanocrystalline silicon solar cells," Phys Status Solidi A 207, 671-677 (2010).
72. M. Ito, C. Koch, V. Svrcek, M. B. Schubert, and J. H. Werner, "Silicon thin film solar cells deposited under 80 degrees C," Thin Solid Films 383, 129-131 (2001).
73. H. Stiebig, E. Moulin, and B. Rech, "Photodetectors based on amorphous and micro crystalline silicon," Thin Solid Films 515, 7522-7525 (2007).
74. Y. Vygranenko, A. Sazonov, M. Fernandes, and M. Vieira, "Photodiode with nanocrystalline Si/amorphous Si absorber bilayer," Appl Phys Lett 99 (2011).
75. M. H. Lee, C. W. Tai, and J. J. Huang, "Correlation between gap state density and bias stress reliability of nanocrystalline TFTs comparing with hydrogenated amorphous silicon TFTs," Solid State Electron 80, 72-75 (2013).
76. C. H. Lee, A. Sazonov, and A. Nathan, "High-mobility nanocrystalline silicon thin-film transistors fabricated by plasma-enhanced chemical vapor deposition," Appl Phys Lett 86 (2005).
77. M. Jana, D. Das, and A. K. Barua, "Role of hydrogen in controlling the growth of mu c-Si : H films from argon diluted SiH4 plasma," J Appl Phys 91, 5442-5448 (2002).
78. C. Smit, R. A. C. M. M. van Swaaij, H. Donker, A. M. H. N. Petit, W. M. M. Kessels, and M. C. M. van de Sanden, "Determining the material structure of microcrystalline silicon from Raman spectra," J Appl Phys 94, 3582-3588 (2003).
79. J. Zi, H. Buscher, C. Falter, W. Ludwig, K. M. Zhang, and X. D. Xie, "Raman shifts in Si nanocrystals," Appl Phys Lett 69, 200-202 (1996).
80. A. Matsuda, "Growth mechanism of microcrystalline silicon obtained from reactive plasmas," Thin Solid Films 337, 1-6 (1999).
81. J. Perrin, Y. Takeda, N. Hirano, Y. Takeuchi, Surf. Sci, 210 (1989) 114-128.
82. P. Q. Luo, Z. B. Zhou, K. Y. Chan, D. Y. Tang, R. Q. Cui, and X. M. Dou, "Gas doping ratio effects on p-type hydrogenated nanocrystalline silicon thin films grown by hot-wire chemical vapor deposition," Appl Surf Sci 255, 2910-2915 (2008).
83. R. Saleh, and N. H. Nickel, "The influence of boron concentrations on structural properties in disorder silicon films," Appl Surf Sci 254, 580-585 (2007)
84. R. Saleh, and N. H. Nickel, "Raman spectroscopy of B-doped microcrystalline silicon films," Thin Solid Films 427, 266-269 (2003).
85. Z. Li, X. W. Zhang, and G. R. Han, "Electrical and optical properties of boron-doped nanocrystalline silicon films deposited by PECVD," Phys Status Solidi A 207, 144-148 (2010).
86. S. A. Filonovich, M. Ribeiro, A. G. Rolo, and P. Alpuim, "Phosphorous and boron doping of nc-Si : H thin films deposited on plastic substrates at 150 degrees C by Hot-Wire Chemical Vapor Deposition," Thin Solid Films 516, 576-579 (2008).
87. L. Q. Guo, J. N. Ding, J. C. Yang, G. G. Cheng, and Z. Y. Ling, "Effects of high hydrogen dilution ratio on surface topography and mechanical properties of hydrogenated nanocrystalline silicon thin films," Thin Solid Films 519, 6039-6043 (2011).
88. A. M. Ali, H. Kobayashi, T. Inokuma, and A. Al-Hajry, "Morphological, luminescence and structural properties of nanocrystalline silicon thin films," Mater Res Bull 48, 1027-1033 (2013).
89. S. Kumar, J. Gope, A. Kumar, A. Parashar, C. M. S. Rauthan, and P. N. Dixit, "High Pressure Growth of Nanocrystalline Silicon Films," J Nanosci Nanotechno 8, 4211-4217 (2008).
90. R. W. Miles, K. M. Hynes, and I. Forbes, "Photovoltaic solar cells: An overview of state-of-the-art cell development and environmental issues," Prog Cryst Growth Ch 51, 1-42 (2005).
91. R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, "40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells," Appl Phys Lett 90 (2007).
92. B. Bitnar, W. Durisch, J. C. Mayor, H. Sigg, and H. R. Tschudi, "Characterisation of rare earth selective emitters for thermophotovoltaic applications," Sol Energ Mat Sol C 73, 221-234 (2002).
93. P. F. Baldasaro, J. E. Raynolds, G. W. Charache, D. M. DePoy, C. T. Ballinger, T. Donovan, and J. M. Borrego, "Thermodynamic analysis of thermophotovoltaic efficiency and power density tradeoffs," J Appl Phys 89, 3319-3327 (2001).
94. J. van der Heide, N. E. Posthuma, G. Flamand, W. Geens, and J. Poortmans, "Cost-efficient thermophotovoltaic cells based on germanium substrates," Sol Energ Mat Sol C 93, 1810-1816 (2009).
95. A. Toriumi, T. Tabata, C. H. Lee, T. Nishimura, K. Kita, and K. Nagashio, "Opportunities and challenges for Ge CMOS - Control of interfacing field on Ge is a key," Microelectron Eng 86, 1571-1576 (2009).
96. C. Y. Tsao, J. Wong, J. L. Huang, P. Campbell, D. Y. Song, and M. A. Green, "Structural dependence of electrical properties of Ge films prepared by RF magnetron sputtering," Appl Phys a-Mater 102, 689-694 (2011).
97. C. Y. Tsao, J. L. Huang, X. J. Hao, P. Campbell, and M. A. Green, "Formation of heavily boron-doped hydrogenated polycrystalline germanium thin films by co-sputtering for developing p(+) emitters of bottom cells," Sol Energ Mat Sol C 95, 981-985 (2011).
98. H. Huang, H. Shen, L. Zhang, T. Wu, L. Lu, Z. Tang, and J. Shen, "Effects of hydrogen dilution ratio on properties of Boron-doped germanium films by hot-wire chemical vapor deposition," J Optoelectron Adv M 11, 1769-1772 (2009).
99. T. H. Chang, J. Y. Chang, Y. H. Chu, C. C. Lee, I. C. Chen, and T. Li, "Investigation of the amorphous to microcrystalline phase transition of thin film prepared by electron cyclotron resonance chemical vapor deposition method," Surf Coat Tech 231, 604-607 (2013).
100. Y. Kawai, K. Uchino, H. Muta, and T. Rowf, "Development of a 915 MHz ECR plasma source," Vacuum 87, 123-127 (2013).
101. H. Fritzsche, M. Tanielian, C.C. Tsai, P.J. Gaczi, "Hydrogen content and density of plasma deposited amorphous silicon-hydrogen," J. Appl. Phys. 50, 3366 (1979).
102. C. Y. Tsao, J. W. Weber, P. Campbell, P. I. Widenborg, D. Y. Song, and M. A. Green, "Low-temperature growth of polycrystalline Ge thin film on glass by in situ deposition and ex situ solid-phase crystallization for photovoltaic applications," Appl Surf Sci 255, 7028-7035 (2009).
103. T. Narita, K. Naruse, I. Suzuki, S. Ogawa, T. Iida, N. Yoshida, T. Itoh, and S. Nonomura, "Deposition of microcrystalline Ge films using hot-wire technique without toxic gases," J Non-Cryst Solids 354, 2214-2217 (2008).
104. P. Q. Luo, Z. B. Zhou, K. Y. Chan, D. Y. Tang, R. Q. Cui, and X. M. Dou, "Gas doping ratio effects on p-type hydrogenated nanocrystalline silicon thin films grown by hot-wire chemical vapor deposition," Appl Surf Sci 255, 2910-2915 (2008).
105. R. Saleh, and N. H. Nickel, "The influence of boron concentrations on structural properties in disorder silicon films," Appl Surf Sci 254, 580-585 (2007).
106. R. Saleh, and N. H. Nickel, "Raman spectroscopy of B-doped microcrystalline silicon films," Thin Solid Films 427, 266-269 (2003).
107. A. Matsuda, "Growth mechanism of microcrystalline silicon obtained from reactive plasmas," Thin Solid Films 337, 1-6 (1999).
108. Y. Okamoto, K. Makihara, S. Higashi, and S. Miyazaki, "Formation of microcrystalline germanium (mu c-Ge : H) films from inductively coupled plasma CVD," Appl Surf Sci 244, 12-15 (2005).
109. J. Perrin, Y. Takeda, N. Hirano, Y. Takeuchi, "Sticking and recombination of the SiH3 radical on hydrogenated amorphous silicon: The catalytic effect of diborane," Surf. Sci 210, 114-128 (1989).
110. J. Fortner, R. Q. Yu, and J. S. Lannin, "Near-Surface Raman-Scattering in Germanium Clusters and Ultrathin Amorphous Films," Phys Rev B 42, 7610-7613 (1990).
111. Y. P. Chou, and S. C. Lee, "Structural, optical, and electrical properties of hydrogenated amorphous silicon germanium alloys," J Appl Phys 83, 4111-4123 (1998).
112. M. H. Brodsky, M. Cardona, and J. J. Cuomo, "Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow charge and sputtering," Physical Review B.16, 3555 (1977).
113. H. Fujiwara, and M. Kondo, "Effects of a-Si : H layer thicknesses on the performance of a-Si : H/c-Si heterojunction solar cells," J Appl Phys 101 (2007).
114. S. Cosentino, M. Miritello, I. Crupi, G. Nicotra, F. Simone, C. Spinella, A. Terrasi, and S. Mirabella, "Room-temperature efficient light detection by amorphous Ge quantum wells," Nanoscale Res Lett 8 (2013).
115. A. Marti, and G. L. Araujo, "Limiting efficiencies for photovoltaic energy conversion in multigap systems," Sol Energ Mat Sol C 43, 203-222 (1996).
116. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, "Solar cell efficiency tables (version 43)," Prog Photovoltaics 22, 1-9 (2014).
117. S. A. Ringel, J. A. Carlin, C. L. Andre, M. K. Hudait, M. Gonzalez, D. M. Wilt, E. B. Clark, P. Jenkins, D. Scheiman, A. Allerman, E. A. Fitzgerald, and C. W. Leitz, "Single-junction InGaP/GaAs solar cells grown on Si substrates with SiGe buffer layers," Prog Photovoltaics 10, 417-426 (2002).
118. C. L. Andre, J. A. Carlin, J. J. Boeckl, D. M. Wilt, M. A. Smith, A. J. Pitera, M. L. Lee, E. A. Fitzgerald, and S. A. Ringel, "Investigations of high-performance GaAs solar cells grown on Ge-Si1-xGex-Si substrates," Ieee T Electron Dev 52, 1055-1060 (2005).
119. R. Ginige, B. Corbett, M. Modreanu, C. Barrett, J. Hilgarth, G. Isella, D. Chrastina, and H. von Kanel, "Characterization of Ge-on-Si virtual substrates and single junction GaAs solar cells," Semicond Sci Tech 21, 775-780 (2006).
120. M. R. Lueck, C. L. Andre, A. J. Pitera, M. L. Lee, E. A. Fitzgerald, and S. A. Ringel, "Dual junction GaInP/GaAs solar cells grown on metamorphic SiGe/Si substrates with high open circuit voltage," Ieee Electr Device L 27, 142-144 (2006)
121. L. Hsu, and W. Walukiewicz, "Modeling of InGaN/Si tandem solar cells," J Appl Phys 104 (2008).
122. J. Michel, J. F. Liu, and L. C. Kimerling, "High-performance Ge-on-Si photodetectors," Nat Photonics 4, 527-534 (2010).
123. J. M. Hartmann, A. Abbadie, A. M. Papon, P. Holliger, G. Rolland, T. Billon, J. M. Fedeli, M. Rouviere, L. Vivien, and S. Laval, "Reduced pressure-chemical vapor deposition of Ge thick layers on Si(001) for 1.3-1.55-mu m photodetection," J Appl Phys 95, 5905-5913 (2004).
124. J. A. Wang, and S. Lee, "Ge-Photodetectors for Si-Based Optoelectronic Integration," Sensors-Basel 11, 696-718 (2011).
125. F. Liu, X. C. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, "Ge-on-Si laser operating at room temperature," Optics Letters, vol. 35 (5), pp. 679-681, 2010.
126. Y. Chriqui, L. Largeau, G. Patriarche, G. Saint-Girons, S. Bouchoule, I. Sagnes, D. Bensahel, Y. Campidelli, and O. Kermarreeb, "Direct growth of GaAs-based structures on exactly (001)-oriented Ge/Si virtual substrates: reduction of the structural defect density and observation of electroluminescence at room temperature under CW electrical injection," J Cryst Growth 265, 53-59 (2004).
127. D. O′Mahony, W. Zimmerman, S. Steffen, J. Hilgarth, P. Maaskant, R. Ginige, L. Lewis, B. Lambert, and B. Corbett, "Free-standing gallium nitride Schottky diode characteristics and stability in a high-temperature environment," Semicond Sci Tech 24 (2009).
128. D. H. Choi, J. S. Harris, E. Kim, P. C. McIntyre, J. Cagnon, and S. Stemmer, "High-quality III-V semiconductor MBE growth on Ge/Si virtual substrates for metal-oxide-semiconductor device fabrication," J Cryst Growth 311, 1962-1971 (2009).
129. H. Tanoto, S. F. Yoon, W. K. Loke, K. P. Chen, E. A. Fitzgerald, C. Dohrman, and B. Narayanan, "Heteroepitaxial growth of GaAs on (100) Ge/Si using migration enhanced epitaxy," J Appl Phys 103 (2008).
130. S. Luryi, A. Kastalsky and J. C. Bean, "New infrared detector on a silicon chip," IEEE Trans on Electron Devices 31 (9), 1135-1139 (1984).
131. E. A. Fitzgerald, "Dislocations in Strained-Layer Epitaxy - Theory, Experiment, and Applications," Mater Sci Rep 7, 91-142 (1991).
132. M. T. Currie, S. B. Samavedam, T. A. Langdo, C. W. Leitz, and E. A. Fitzgerald, "Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing," Appl Phys Lett 72, 1718-1720 (1998).
133. S. Jongthammanurak, J. F. Liu, K. Wada, D. D. Cannon, D. T. Danielson, D. Pan, L. C. Kimerling, and J. Michel, "Large electro-optic effect in tensile strained Ge-on-Si films," Appl Phys Lett 89 (2006).
134. Y. Takada, J. Osaka, Y. Ishikawa, and K. Wada, "Effect of Mesa Shape on Threading Dislocation Density in Ge Epitaxial Layers on Si after Post-Growth Annealing," Jpn J Appl Phys 49 (2010).
135. V. A. Shah, A. Dobbie, M. Myronov, and D. R. Leadley, "High quality relaxed Ge layers grown directly on a Si(001) substrate," Solid State Electron 62, 189-194 (2011).
136. D. Chen, Z. Y. Xue, X. Wei, G. Wang, L. Ye, M. Zhang, D. W. Wang, and S. Liu, "Ultralow temperature ramping rate of LT to HT for the growth of high quality Ge epilayer on Si (100) by RPCVD," Applied Surface Science 299, 1-5 (2014).
137. V. Sorianello, L. Colace, G. Assanto, and M. Nardone, "Micro-Raman characterization of Germanium thin films evaporated on various substrates," Microelectron Eng 88, 492-495 (2011).
138. V. Sorianello, A. De Iacovo, L. Colace, A. Fabbri, L. Tortora, E. Buffagni, and G. Assanto, "High responsivity near-infrared photodetectors in evaporated Ge-on-Si," Appl Phys Lett 101 (2012).
139. Y. Kawai, K. Uchino, H. Muta, and T. Rowf, "Development of a 915 MHz ECR plasma source," Vacuum 87, 123-127 (2013).
140. T. H. Chang, J. Y. Chang, Y. H. Chu, C. C. Lee, I. C. Chen, and T. Li, "Investigation of the amorphous to microcrystalline phase transition of thin film prepared by electron cyclotron resonance chemical vapor deposition method," Surface and Coatings Technology 231, 604-607 (2013).
141. . H. Chang, C. Chang, Y. H. Chu, C. C. Lee, J. Y. Chang, I. C. Chen, and T. Li, "Low temperature growth of highly conductive boron-doped germanium thin films by electron cyclotron resonance chemical vapor deposition," Thin Solid Films 551, 53-56 (2014).
142. J. Platen, B. Selle, I. Sieber, S. Brehme, U. Zeimer, and W. Fuhs, "Low-temperature epitaxial growth of Si by electron cyclotron resonance chemical vapor deposition," Thin Solid Films 381 (1), 22-30 (2001).
143. R. Ichikawa, S. Takita, Y. Ishikawa, and K. Wada, "Germanium as a Material to Enable Silicon Photonics," Silicon Photonics Ii: Components and Integration 119, 131-141 (2011)
144. B. von Blanckenhagen, D. Tonova, and J. Ullmann, "Application of the Tauc-Lorentz formulation to the interband absorption of optical coating materials," Applied Optics, 41 (16) 3137-3141 (2002).
145. D. E. Aspnes, "Optical properties of thin films," Thin Solid Films 89, 249-262, (1982).
146. C. Pickering, R. T. Carline, D. J. Robbins, W. Y. Leong, S. J. Barnett, A. D. Pitt, and A. G. Cullis, "Spectroscopic Ellipsometry Characterization of Strained and Relaxed Si1-Xgex Epitaxial Layers," Journal of Applied Physics 73 (1), 239-250, (1993).
147. A. Matsuda, "Microcrystalline silicon. Growth and device application," J Journal of Non-Crystalline Solids 338, 1-12 (2004).
148. H. C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, "High-quality Ge epilayers on Si with low threading-dislocation densities," Applied Physics Letters 75 (19), 2909-2911 (1999).
149. S. G. Thomas, S. Bharatan, R. E. Jones, R. Thoma, T. Zirkle, N. V. Edwards, R. Liu, X. D. Wang, Q. H. Xie, C. Rosenblad, J. Ramm, G. Isella, and H. Von Kanel, "Structural characterization of thick, high-quality epitaxial Ge on Si substrates grown by low-energy plasma-enhanced chemical vapor deposition," Journal of Electronic Materials 32 (9), 976-980 (2003).
150. P. H. Tan, K. Brunner, D. Bougeard, and G. Abstreiter, "Raman characterization of strain and composition in small-sized self-assembled Si/Ge dots," Phys Rev B 68 (2003).
151. J. L. Liu, C. D. Moore, G. D. U′Ren, Y. H. Luo, Y. Lu, G. Jin, S. G. Thomas, M. S. Goorsky, and K. L. Wang, "A surfactant-mediated relaxed Si0.5Ge0.5 graded layer with a very low threading dislocation density and smooth surface," Appl Phys Lett 75, 1586-1588 (1999).
152. Y. Ohmachi, T. Nishioka, and Y. Shinoda, "The heteroepitaxy of Ge on Si (100) by vacuum evaporation," Journal of Applied Physics 54, 5466-5469 (1983).
153. P. Stulik, and J. Singh, "Optical modelling of a single-junction p-i-n type and tandem structure amorphous silicon solar cells with perfect current matching," Sol Energ Mat Sol C 46, 271-288 (1997).
154. F. Meillaud, A. Shah, C. Droz, E. Vallat-Sauvain, and C. Miazza, "Efficiency limits for single junction and tandem solar cells," Sol Energ Mat Sol C 90, 2952-2959 (2006).
指導教授 張正陽(Jenq-Yang Chang) 審核日期 2016-6-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明