博碩士論文 992207007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:18.119.213.216
姓名 孟昭安(Chao-An Meng)  查詢紙本館藏   畢業系所 認知與神經科學研究所
論文名稱 動態聽覺編碼在3D空間中的神經相關機制
(Neural Correlates of Encoding the Velocity of Auditory Motion in 3D Space)
相關論文
★ 語音知覺與中文識字能力的關係★ 於虛擬環境中之雙耳時間差偵測機制研究
★ 母語為中文與英文者偵測頻率掃描訊號方向之事件相關腦電波研究★ 絕對音感能力對嘈雜環境中旋律和語句辨識影響之行為和腦造影研究
★ 基頻輪廓和音樂經驗對嘈雜環境中語句辨識影響之行為和腦電波實驗
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在聽覺上偵測移動的物體,不論是對動物的生存或是人類的導航與社交能力而言都相當重要。本實驗探討人類的聽覺系統對於移動聲音的偵測能力,以及其如何在腦神經層面上對3D空間中音源移動的速率進行編碼。行為實驗一探討不同速率及角度的音源對聽覺運動物體的偵測能力造成的影響。在實驗二則利用功能性磁振造影儀器探討對於音源移動速率的神經編碼情況。行為實驗結果顯示,無論聲源速率為何,當聲源的位置在靠近中分面位置的區域時,其運動情況能被偵測的最好。而在速率60, 90, 180度/秒的情況中發現左右區域偵測效率不對稱的特徵。功能性磁振造影的結果顯示了不同的活化徵狀,快速運動與慢速運動的對比顯示在統計上顯著的腦活化程度差異,其位置位於右側的上顳葉(superior temporal)腦區。實驗結果說明當人類在偵測運動中的物體時,針對不同速率的音源可以找到對應的腦活化區域。
摘要(英) Detection of auditory motion is important for animal survival as well as environmental navigation and human social interactions. In this study, we investigate the ability of human auditory system to detect the velocity of sound motion as well as the neural correlates in encoding the velocity of sounds presented in 3D space. In Experiment 1, the effect of velocities and azimuth angle on sound motion detection was studied. In Experiment 2, the neural correlates that encode the velocity of auditory sound motion were investigated using fMRI paradigm. Behavioral results showed that auditory motion was detected better at all velocities in the central azimuth area, and there were asymmetric patterns when motion velocity was at 60, 90, and 180 deg/s (degrees per second). Brain imaging data comparing fast motion with slow motion revealed significant activation differences in right superior temporal brain area. These data suggests that there might be distinct brain regions that selectively encode the velocity of a moving sound.
關鍵字(中) ★ 速率
★ 運動
★ 聽覺
★ 功能性磁振造影
關鍵字(英) ★ azimuth angle
★ velocity
★ auditory motion
論文目次 Abstract……………………………………………………………………i
中文摘要………………………………………………………………………ii
Acknowdgement………………………………………………………………iii
Contents ………………………………………………………………iv
Table of Contents……………………………………………………………vii
List of Figures ………………………………………………………………viii
1. Introduction……………………………………………………………1
1.1. The localization of the sound source ……………………………… 1
1.1.1. Interaural Time Differences (ITD)……………………………………2
1.1.2. Interaural Level Differences (ILD)……………………………………2
1.1.3. Interaural Phase Differences (IPD)………………………………………3
1.1.4. Head-related transfer function (HRTF)…………………………………4
1.2. The perception of velocity of a moving sound in the brain …………5
1.2.1. The snap-shot hypothesis …………………………………………6
1.2.2. The perception of stationary and moving sound objects in space………7
1.3. Motivation of study…………………………………………………9
2. Methods…………………………………………………………………10
2.1. Stimuli………………………………………………………………10
2.2. Experiment.1A………………………………………………………11
2.2.1. Subjects…………………………………………………………11
2.2.2. Procedure……………………………………………………………11
2.3. Experiment.1B………………………………………………………12
2.3.1. Subjects……………………………………………………………12
2.3.2. Procedure……………………………………………………………12
2.4. Experiment.2……………………………………………………………13
2.4.1. Subjects……………………………………………………………13
2.4.2. Procedure……………………………………………………………14
2.4.3. Imaging parameters……………………………………………………15
3. Results…………………………………………………………………17
3.1. Experiment.1A………………………………………………………17
3.1.1. Azimuth angle and velocity…………………………………………17
3.1.2. Hemispace and direction……………………………………………18
3.2. Experiment.1B………………………………………………………19
3.2.1. Azimuth angle and velocity…………………………………………19
3.2.2. Hemispace and direction……………………………………………21
3.2.3. Genders and handiness……………………………………………21
3.3. Experiment.2………………………………………………………………22
3.3.1. Motion – Static…………………………………………………22
3.3.2. Fast – Slow motion……………………………………………………23
3.3.3. Effect of velocities……………………………………………24
3.3.4. Effects of pure motion…………………………………………25
3.3.5. Motion repetition effect…………………………………………………26
3.3.6 Effect on velocity on the amplitude of BOLD signal in ROI……………27
4. Discussion………………………………………………………………28
4.1 Effects of velocity on motion-direction judgment…………………………28
4.2 Effects of hemispace and direction on motion detection…………………30
4.3 Brain regions selective to the velocity of moving sound…………………31
4.4 Neural correlates of encoding the velocity of pure motion………………32
4.5 Individual difference spatial information perception………………………33
4.6 Hypotheses on velocity detecting of sound motion………………………34
5. Conclusions………………………………………………………………36
6. References………………………………………………………………37
7. Tables……………………………………………………………………41
8. Figures…………………………………………………………………47
參考文獻 Arnott, S. R., & Alain, C. (2011). The auditory dorsal pathway: orienting vision. Neuroscience Biobehavioral Review, 35(10), 2162-2173.
Bidet-Caulet, A., Voisin, J., Bertrand, O., & Fonlupt, P. (2005). Listening to a walking human activates the temporal biological motion area. Neuroimage, 28(1), 132-139.
Bremmer, F., Schlack, A., Shah, N. J., Zafiris, O., Kubischik, M., Hoffmann, K.-P., . . . Fink, G. R. (2001). Polymodal Motion Processing in Posterior Parietal. Neuron, 29, 9.
Brunetti, M., Belardinelli, P., Caulo, M., Del Gratta, C., Della Penna, S., Ferretti, A., . . . Romani, G. L. (2005). Human brain activation during passive listening to sounds from different locations: an fMRI and MEG study. Human Brain Mapping, 26(4), 251-261.
Chambers, C. (2005). Staring in the Eye of Auditory Neglect: Comments on ‘Gaze Direction Modulates Auditory Spatial Deficits in Stroke Patients with Neglect’. Cortex, 41(2), 117-120.
Ducommun, C. Y., Murray, M. M., Thut, G., Bellmann, A., Viaud-Delmon, I., Clarke, S., & Michel, C. M. (2002). Segregated processing of auditory motion and auditory location: an ERP mapping study. Neuroimage, 16(1), 76-88.
Dufour, A., Touzalin, P., & Candas, V. (2007). Rightward shift of the auditory subjective straight ahead in right- and left-handed subjects. Neuropsychologia, 45(2), 447-453.
Getzmann, S. (2008). Effects of velocity and motion-onset delay on detection and discrimination of sound motion. Hearing Research, 246(1-2), 44-51.
Getzmann, S. (2009). Effect of auditory motion velocity on reaction time and cortical processes. Neuropsychologia, 47(12), 2625-2633.
Griffiths, T. D., Rees, G., Rees, A., Green, G. G. R., Witton, C., & Rowe, D. (1998). Right parietal cortex is involved in the perception of sound movement in humans. Nature, Neuroscience(1), 74-79.
Griffiths, T. D., Rees, G., Rees, A., Green, G. G. R., Witton, C., Rowe, D., . . . Frackowiak, R. S. J. (1998). Right parietal cortex is involved in the perception of sound. nature neuroscience, 1(1), 5.
Hackett, T. A. (2011). Information flow in the auditory cortical network. Hearing Research, 271(1-2), 133-146.
Hausmann, M., Corballis, M. C., Fabri, M., Paggi, A., & Lewald, J. (2005). Sound lateralization in subjects with callosotomy, callosal agenesis, or hemispherectomy. Brain Research Cognitive Brain Research, 25(2), 537-546.
Hirnstein, M., Hausmann, M., & Lewald, J. (2007). Functional cerebral asymmetry in auditory motion perception. Laterality, 12(1), 87-99.
Hu, H., Zhou, L., Ma, H., & Wu, Z. (2008). HRTF personalization based on artificial neural network in individual virtual auditory space. Applied Acoustics, 69(2), 163-172.
Kreitewolf, J., Lewald, J., & Getzmann, S. (2011). Effect of attention on cortical processing of sound motion: an EEG study. Neuroimage, 54(3), 2340-2349.
Krumbholz, K., Hewson-Stoate, N., & Schonwiesner, M. (2007). Cortical response to auditory motion suggests an asymmetry in the reliance on inter-hemispheric connections between the left and right auditory cortices. Journal Neurophysiology, 97(2), 1649-1655.
Lappin, J. S. (1975). On the Relation Between Time and Space in the Visual Discrimination of Velocity. Journal of Experimental Psychology: Human Perception and Performance, 4, 94.
Lewald, J. (2004). Gender-specific hemispheric asymmetry in auditory space perception. Brain Research Cognitive Brain Research, 19(1), 92-99.
Lewald, J., Peters, S., Corballis, M. C., & Hausmann, M. (2009). Perception of stationary and moving sound following unilateral cortectomy. Neuropsychologia, 47(4), 962-971.
Lewald, J., Staedtgen, M., Sparing, R., & Meister, I. G. (2011). Processing of auditory motion in inferior parietal lobule: evidence from transcranial magnetic stimulation. Neuropsychologia, 49(2), 209-215.
Middlebrooks, J. C., & Green, D. M. (1991). Sound localization by human listeners. Psychology, 42, 24.
Nityananda, V., & Bee, M. A. (2012). Spatial release from masking in a free-field source identification task by gray treefrogs. Hearing Research, 285(1-2), 86-97.
Nuku, P., & Bekkering, H. (2010). When one sees what the other hears: crossmodal attentional modulation for gazed and non-gazed upon auditory targets. Conscious Cognition, 19(1), 135-143.
Ocklenburg, S., Hirnstein, M., Hausmann, M., & Lewald, J. (2010). Auditory space perception in left- and right-handers. Brain Cognition, 72(2), 210-217.
Pavani, F., Ladavas, E., & Driver, J. (2005). Gaze Direction Modulates Auditory Spatial Deficits in Stroke Patients with Neglect. Cortex, 41(2), 181-188.
Peña, J. L., & Konishi, M. (2002). From Postsynaptic Potentials to Spikes in the Genesis of Auditory. The Journal of Neuroscience, 22(13), 7.
Picaut, J., Lepolles, T., Lhermite, P., & Gary, V. (2005). Experimental study of sound propagation in a street. Applied Acoustics, 66(2), 149-173.
Saberi, K., & Petrosyan, A. (2005). Neural cross-correlation and signal decorrelation: insights into coding of auditory space. Journalof Theoretical Biology, 235(1), 45-56.
Salminen, N. H., Tiitinen, H., Miettinen, I., Alku, P., & May, P. J. (2010). Asymmetrical representation of auditory space in human cortex. Brain Research, 1306, 93-99.
Savel, S. (2009). Individual differences and left/right asymmetries in auditory space perception. I. Localization of low-frequency sounds in free field. Hearing Research, 255(1-2), 142-154.
Schnupp, J., Nelken, I., & King, A. (2011). Auditory Neuroscience (1st ed.). Massachusetts Institute of Technology: Cambridge, Massachusetts.
Simon, C., Philip, L., & Stephanie, H. (1997). The nature and distribution of errors in soundlocalization by humanlisteners. Hearing Research, 114(1-2), 179-196.
Smith, K. R., Saberi, K., & Hickok, G. (2007). An event-related fMRI study of auditory motion perception: no evidence for a specialized cortical system. Brain Research, 1150, 94-99.
Tata, M. S., & Ward, L. M. (2005). Spatial attention modulates activity in a posterior "where" auditory pathway. Neuropsychologia, 43(4), 509-516.
van der Zwaag, W., Gentile, G., Gruetter, R., Spierer, L., & Clarke, S. (2011). Where sound position influences sound object representations: a 7-T fMRI study. Neuroimage, 54(3), 1803-1811.
Wenzel, E. M., Arruda, M., Kistler, D. J., & Wightman, F. L. (1993). Localization using non-individualized head-related transfer functions. Journal of the Acoustical Society of America, 94, 111-123.
Wolbers, T., Zahorik, P., & Giudice, N. A. (2011). Decoding the direction of auditory motion in blind humans. Neuroimage, 56(2), 681-687.
Zatorre, R. J., Bouffard, M., Ahad, P., & Belin, P. (2002). Where is ’’where’’ in the human auditory cortex. Nature Neuroscience, 5(9), 905-909.
Zhang, P. X., & Hartmann, W. M. (2010). On the ability of human listeners to distinguish between front and back. Hearing Research, 260(1-2), 30-46.
指導教授 謝宜蕙(I-hui Hsieh) 審核日期 2012-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明