參考文獻 |
[1] L. L. Kazmerski, National Renewable Energy Laboratory (NREL), Golden, CO (2013).
[2] S. Gubbala, V. Chakrapani, V. Kumar, and M. K. Sunkara, "Band-Edge Engineered Hybrid Structures for Dye-Sensitized Solar Cells Based on SnO2 Nanowires," Advanced Functional Materials, 18, 2411-2418, (2008).
[3] S. Kambe, S. Nakade, Y. Wada, T. Kitamura, and S. Yanagida, "Effects of crystal structure, size, shape and surface structural differences on photo-induced electron transport in TiO2 mesoporous electrodes," Journal of Materials Chemistry, 12, 723-728, (2002).
[4] T. Sugimoto, X. Zhou, and A. Muramatsu, "Synthesis of uniform anatase TiO2 nanoparticles by gel–sol method," Journal of Colloid and Interface Science, 259, 53-61, (2003).
[5] Y. Lin, J. Lin, P. Liu, Mohammed J. Meziani, Lawrence F. Allard, and Y. P. Sun, "Hot-Fluid Annealing for Crystalline Titanium Dioxide Nanoparticles in Stable Suspension," Journal of the American Chemical Society, 124, 11514-11518, (2002).
[6] D. Xu, Z. Miao, J. Ouyang, G. Guo, X. Zhao, and Y. Tang, "Electrochemically Induced Sol-Gel Preparation of Single-Crystalline TiO2 Nanowires," Nano Letters, 2, 717-720, (2002).
[7] G. S. Wu, Y. Lin, X. Y. Yuan, T. Xie and L. D. Zhang, "Fabrication and optical properties of TiO2 nanowire arrays made by sol-gel electrophoresis deposition into anodic alumina membranes," Journal of physics: Condensed Matter, 15, 2917-2922, (2003).
[8] G. H. Li, Y. X. Zhang, Y. X. Jin, Y. Zhang, J. Zhang, L. D. Zhang, "Hydrothermal synthesis and photoluminescence of TiO2 nanowires," Chemical Physics Letters, 365, 300-304, (2002).
[9] B. Xiang, Y. Zhang, Z. Wang, X. H. Luo, Y. W. Zhu, H. Z. Zhang, et al., "Field-emission properties of TiO2 nanowire arrays," Journal of Physics D: Applied Physics, 38, 1152-1155, (2005).
[10] Eray S. Aydil, B. Liu, "Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cell," Journal of the American Chemical Society, 131, 3985-3990, (2009).
[11] X. Q. Gu, Y. L. Zhao, and Y. H. Qiang, "Influence of annealing temperature on performance of dye-sensitized TiO2 nanorod solar cells," Journal of Materials Science: Materials in Electronics, 23, 1373-1377, (2011).
[12] A. Kornowski, P. Davide Cozzoli, and H. Weller, "Low-Temperature Synthesis of Soluble and Processable Organic-Capped Anatase TiO2 Nanorods," Journal of the American Chemical Society, 125, 14539-14548, (2003).
[13] J. J. Wu, C. C. Yu, "Aligned TiO2 Nanorods and Nanowalls," The journal of physical chemistry. B 108, 3377-3379, (2004).
[14] H. W. Chung, C. C. Chen, C. H. Chen, H. P. Lu, C. M. Lan, S. F. Chen, L. Luo, C. S. Hung, and W. G. Diau, "Fabrication and Characterization of Anodic Titanium Oxide Nanotube Arrays of Controlled Length for Highly Efficient Dye-Sensitized Solar Cells," Journal of Physical Chemistry C, 112, 19151-19157, (2008).
[15] M. Hiramatsu, T. Kasuga, A. Hoson, T. Sekino, and K. Niihara, "Formation of Titanium Oxide Nanotube," Langmuir, 14, 3160-3163, (1998).
[16] L. K. Tan, M. K. Kumar, W. W. An, and H. Gao, "Transparent, well-aligned TiO2 nanotube arrays with controllable dimensions on glass substrates for photocatalytic applications," ACS Appl Mater Interfaces, 2, 498-503, Feb (2010).
[17] D. Gong, O. K. Varghese, M. Paulose, K. G. Ong, E. C. Dickey and C. A. Grimes, "Extreme Changes in the Electrical Resistance of Titania Nanotubes with Hydrogen Exposure," Advanced materials, 15, 624-627, (2003).
[18] C. Jeon, S. Lee, and Y. Park, "Fabrication of TiO2 Tubules by Template Synthesis and Hydrolysis with Water Vapor," Chemistry of materials, 16, 4292-4295, (2004).
[19] J. M. Wu, H. C. Shih, and W. T. Wu, "Electron field emission from single crystalline TiO2 nanowires prepared by thermal evaporation," Chemical Physics Letters, 413, 490-494, (2005).
[20] F. Müller, A. P. Li, A. Birner, K. Nielsch, and U. Gösele, "Hexagonal Pore Arrays with a 50-420 nm Interpore Distance Formed by self-organization in Anodic Alumina," Applied Physics, 84, 6023-6026, (1998).
[21] L. Z. Feiyue. Li, and Robert M. Metzger, "On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide," Chem. Mater., 10, 2470-2480, (1998).
[22] G. E. Thompson, "Porous anodic alumina fabrication, characterization and applications," Thin Solid Films, 297, 192-201, (1997).
[23] E. Putzeiko, A. Terenin, and I. Akimov, "Energy transfer in systems of connected organic molecules," Discuss. Faraday Soc., 27, 83-93, (1959).
[24] M. Matsumura, H. Tsubomura, Y. Nomura, T. Amamiya, "Dye sensitized zinc oxide: aqueous electrolyte: platinum photocell," Nature, 261, 402-403, (1976).
[25] B. O′Regan and M. Grätzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films," nature, 353, 737-740, (1991).
[26] A. Kay, M. K. Nazeeruddin, I. Rodicio, R. Humphrybaker, E. Muller, P. Liska, N. Vlachopoulos, M. Grätzel, "Conversion of Light to Electricity by cis-X2Bis 2,2′-bipyridyl-4,4′-dicarboxylate)rutheniumⅡ Charge- Transfer Sensitizers(X=C1-, Br-, I-, CN-, and SCN-) on Nanocrystalline TiO2 Electrodes," J. Am. Chem. Soc., 115, 6382-6390, (1993).
[27] D. L. U. Bach, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, M. Grätzel, "Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies," Nature, 395, 583-585, (1998).
[28] P. Nazeeruddin, K. Mohammad, R. Thierry, S. M. Zakeeruddin, R. H. Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, "Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells," J. Am. Chem. Soc., 123, 1613-1624, (2001).
[29] J. Burschka, N. Pellet, S. J. Moon, R. H. Baker, P. Gao, M. K. Nazeeruddin, et al., "Sequential deposition as a route to high-performance perovskite-sensitized solar cells," Nature, 499, 316-319, Jul 18 (2013).
[30] L. M. Peter, "The Grätzel Cell: Where Next?," The Journal of Physical Chemistry Letters, 2, 1861-1867, (2011).
[31] M. Grätzel, "Photoelectrochemical cells," Nature, 414, 338-344, (2001).
[32] M. A. Jalebi, A. K. Chandiran, Mohammad K. Nazeeruddin, and M. Grätzel, "Analysis of Electron Transfer Properties of ZnO and TiO2 Photoanodes for Dye-Sensitized Solar Cells," ACS Nano, 8, 2261-2268, (2014).
[33] M. Grätzel, "Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells," Inorg. Chem., 44, 6841-6851, (2005).
[34] G. J. Meyer, "Efficient Light-to-Electrical Energy Conversion: Nanocrystalline TiO2 Films Modified with Inorganic Sensitizers," J. Chem. Educ., 74, 652-656, (1997).
[35] S. F. Arie Zaban, and Brian A. Gregg, "Relative Energetics at the Semiconductor/Sensitizing Dye/Electrolyte Interface," J. Phys. Chem. B, 102, 452-460, (1998).
[36] J. Zhang, Q. Xu, Z. Feng, M. Li, and C. Li, "Importance of the relationship between surface phases and photocatalytic activity of TiO2," Angew Chem Int Ed Engl, 47, 1766-1769, (2008).
[37] W. Su, Z. Feng, T. Chen, P. Ying, and C. Li, "Surface Phases of TiO2 Nanoparticles Studied by UV Raman Spectroscopy and FT-IR Spectroscopy," J. phys. Chem. C, 112, 7710-7716, (2008).
[38] A. Primo, A. Corma, and H. Garcia, "Titania supported gold nanoparticles as photocatalyst," Phys Chem Chem Phys, 13, 886-910, Jan 21 (2011).
[39] U. Diebold, "The surface science of titanium dioxide," surface science reports, 48, 53-229, (2003).
[40] H. L. Ma, J. Y. Yang, Y. Dai, Y. B. Zhang, B. Lu, and G. H. Ma, "Raman study of phase transformation of TiO2 rutile single crystal irradiated by infrared femtosecond laser," Applied Surface Science, 253, 7497-7500, (2007).
[41] M. S. Hunter, F. Keller, and D. L. Robinson, "Structural Features of Oxide Coatings on Aluminum," Journal of the Electrochemical Society, 100, 411-419, (1953).
[42] H. Herman, J. C. Scully, "Corrosion: aqueous processes and passive films," Treatise on materials science and technology New York: Academic Press, 1, (1983).
[43] V. P. Parkhutik and V. I. Shershulsky, "Theoretical modelling of porous oxide growth on aluminium," j. Phys. D: Appl. Phys., 25, 1258-1263, (1992).
[44] F. M. O. Jessensky, and U. Gösele, "Self-organized formation of hexagonal pore arrays in anodic alumina," Applied Physics, 72, 1173-1175, (1998).
[45] N. Q. Zhao, X. X. Jiang, C. S. Shi, J. J. Li, Z. G. Zhao, and X. W. Du, "Effects of anodizing conditions on anodic alumina structure," Journal of Materials Science, 42, 3878-3882, (2007).
[46] J. P. O′Sullivan and G. C. Wood, "The Morphology and Mechanism of Formation of Porous Anodic Films on Aluminium," Proc. R .Soc. Lond. A, 317, 511-543, (1970).
[47] 許捷翔, "利用陽極氧化鋁薄膜在矽太陽能電池表面製作抗反射奈米結構," 碩士論文, 國立中央大學光電科學與工程學系, (民101年6月).
[48] S. K. Thamida and H. C. Chang, "Nanoscale pore formation dynamics during aluminum anodization," Chaos, 12, 240-251, Mar (2002).
[49] 李正中, "薄膜光學與鍍膜技術," 藝軒圖書出版社, 第六版, (2012).
[50] F. P. Brian A. Gregg, S. Ferrere, and C. L. Fields, "Interfacial Recombination Processes in Dye-Sensitized Solar Cells and Methods To Passivate the Interfaces," J. Phys. Chem. B, 105, 1422-1429, (2001).
[51] G. Schlichthörl, S. Y. Huang, A. J. Nozik, M. Grätzel, and A. J. Frank, "Charge Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cells," J. Phys. Chem. B, 101, 2576-2582, (1997).
[52] P. J. Cameron and L. M. Peter, "How Does Back-Reaction at the Conducting Glass Substrate Influence the Dynamic Photovoltage Response of Nanocrystalline Dye-Sensitized Solar Cells?," J. Phys. Chem. B, 109, 7392-7398, (2005).
[53] 林健均, "二氧化鈦緻密層對染料敏化太陽能電池特性之影響," 碩士論文, 國立中央大學物理研究所, (民97年6月).
[54] X. Gao, J. Chen, and C. Yuan, "Enhancing the performance of free-standing TiO2 nanotube arrays based dye-sensitized solar cells via ultraprecise control of the nanotube wall thickness," Journal of Power Sources, 240, 503-509, (2013).
[55] Y. P. Zhao and J. G. Fan, "Clusters of bundled nanorods in nanocarpet effect," Applied Physics Letters, 88, 103123, (2006).
[56] 陳君閣, "以陽極處裡法製備奈米孔洞陣列光電元件," 博士論文, 國立中央大學光電科學與工程學系, (民102).
[57] S. Nakao, N. Yamada, T. Hitosugi, Y. Hirose, T. Shimada, and T. Hasegawa, "Fabrication of highly conductive Ta-doped SnO2 polycrystalline films on glass using seed-layer technique by pulse laser deposition," Thin Solid Films, 518, 3093-3096, (2010).
|