摘要(英) |
Pavement roughness is an important feature of the Surface Services, not only does it affects the comfort of riding in a vehicle, but also shows the durability of the pavement allowing the Directorate General to evaluate the frequencies of pavement maintenance. Nevertheless, to have a more efficient control of pavement conditions, collecting the data of regular pavement roughness testing is required. In addition, the testing techniques in the past wasted more time and human resources compared to the new testing meters. As a result, inertial profilers and intelligent vehicle are generally used nowadays.
In this research, 1D laser is replaced by 2D to examine pavement roughness in order to compare the differences of the results between the two laser rangefinders.
Furthermore, the experimental results can be as well referred to the standards of AASHTO and CNS. Additionally, 2D laser calculates the longitudinal measurements of pavement. In consequence, there are three parameters including profile average rangefinder (PAR), profile peak value (PPV) and profile center value (PCV) defined to be analyzed and see if there is difference among these values.
The results revealed that there is non-significant difference among these values. On account of the definition of roughness calculating formula is macroscopic so that the micro-gap in elevation can’’t make too much difference.
According to the standards of AASHTO and CNS, examining pavement roughness by 2D laser suggested no dissimilarity with reference profiling devices, such as Australian Road Research Board Walking Profiler, level Instrument, 1D laser Inertial profiler and International Roughness Index (IRI).
Likewise, the repeatability of 2D laser was evaluated by computing the Average Cross Correlation (ACC) (IRI filtered) and the result is highly positive correlation with other devices. It is also no significant different from the result of other devices in Root Mean Square (RMS). Thus 2D laser can be equipped with inertial profilers.
|
參考文獻 |
Acar, C. (2004). “Robust micromachined vibratory gyroscopes.” Ph.D. dissertation, University of California.
An, Y. Y. and Sun, F. Y. (2010). “Identification of Pavement Elevation Size Based on Laser Scanning Ranging.” 2010 WASE International Conference on Information Engineering,390-392.
Arnberg, P.W., Burke, M.W., Magnusson, G., Oberholtzer, R.,Rahs K.and,Sjogren, L. (1991). The Laser Rst: Current status. Statens Väg- och Trafikinstitut, OPQ Systems AB.
ARRB Retrieved May 13, 2012 from http://www.ARRB.com.au/home.aspx.
Barry N. Taylor and Ambler Thompson (2008). “The international system of units.” NIST Special Publication.
Baus, R. L. and Hong, W. (2004). “Development of profiler based ride ability specifications for asphalt pavements and asphalt overlays.” FHWA-GT-04-07, Federal Highway Administration Report.
Bursanescu, L. and Blais, F. (1997). Automated Pavement Distress Data Collection and Analysis: A 3-D Approach, National Research Council.
British StandardsInsrirution BS-6841 (1987) Guide to measurement and evaluation of human exposure to whole-body mechanical vibration and repeated shock.
Cousins, F.W. and Hollington J.L. (1998). The anatomy of the gyroscope : a report in 3 parts comprising a literature and patent survey directed to the gyroscope and its applications, Advisory Group for Aerospace Research and Development.
Dipstick Retrieved May 10, 2012 from http://www.dipstick.com.
Furgo Roadware Group Retrieved April 24, 2012 from www.roadware.com.
Gillespie, T. D., Sayers, M. W., and Segel, L. (1980). “Pavement roughness and rideability and field evaluation.” NCHRP-308, Transportation Research Board.
Hearne,T.m., Barbee, C. L.,and Helms, L.N. (1996). “Asphalt Rideeability: Construction Control with a Straightedge”, Transportaion Research Record 1543, 81-88.
International Cybernetics Corporation Retrieved March 15, 2012, from http://www.intlcybernetics.com.
Janoff, M. S. (1980). “Pavement Roughness and Rideability.” NCHRP-275 , Transportation Research Board.
Joshi, A. A. (2011). “Design and development of a general purpose embedded acquisition system for transportaton applications.” The university of texas.
Karamihas, S.M., Gillespie, T.D., Perera, R.W., and Kohn, S.D. (1999).“Guidelines for longitudinal pavement profile measurement.” Research Result Digest 244, Transportation Research Board.
McCrae,T. (2004). “Pavement Smoothness Methodologies.” FHWA-HRT-04-061, Federal Highway Administration Report.
Mendelsohn, D. H. (1987). “Automated pavement crack detection:An assessment of leading technologies.” 2nd North American Pavement Management conference, 297-314.
Mrawira, D. and Haas, R. (1996). “Calibration of the TRRL’s Vehicle-Mounted Bump Integrator.” TRRL.
MMA7260QT: 3-Axis Acceleration Sensor, Retrieved January 13, 2011, from http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MMA7260QT&fpsp=1&tab=Documentation_Tab
Perera, R. W. and Kohn, S. D. (2009). “Quantification of Smoothness Index Differences Related to Long-Term Pavement Performance Equipment Type.” FHWA HRT-05-054, Federal Highway Administration Report.
Perera, R. W. and Kohn, S. D. (2007). “Evaluation of Wisconsin DOT Walking
Profiler.” DTFH61-04-D-00010, Federal Highway Administration.
Ramboll, Retrieved January 24, 2012 from http://rst.ramboll.se
Sayers, M. W. and Karamihas, S. M (1998). The Little Book of Profiling-Basic Information about Measuring and Interpreting Road Profiles.
Sayers, M. W., Gillespie, T. D. and Paterson, W. D. O. (1986). “Guidelines for Conducting and Calibrating Road Roughness Measurements.” World Bank Technical Paper Number 46, The World Bank.
Smith, K L. and Titus-Glover, L. (2002). “Pavement smoothness index relationships.” FHWA-RD-02-057, Federal Highway Administration Report.
Swindall, B. and Kobi, D. (1995). “High speed pavement Survey System. ” ,Roadware Corporation.
Strand, T.C. (1985). “Optical three-dimensional sensing for machine vision.” Opt. Eng., vol. 24, 33-40.
The Ministry of Communications P.R.C. Technical Specifications of Cement Concrete Pavement Maintenance for Highway (2001). JTJ 073.1-2001, People’’s Communications Publishing House.
Wang, H. (2005). “Development of Laser System to Measure Pavement Rutting.” Master of Science in Civil Engineering University of South Florida.
Xie, J., Liu, R. and, Michalk, B. (2008).“Automatic Skid Number Evaluation Using Texture Laser Measurement.” IEEE,ICNSC, 37-42.
Yu, X. and Salari E. (2011). “Pavement pothole detection and severity measurement using laser imaging.” International Conference On Electro, 1-5.
王博群,2004年,「以基因規劃法建構案例推理決策樹」,元智大學資訊管理碩士論文。
江巧玉,2002年,「量測系統重複性與再現性的分析研究」,國立成功大學統計學研究所碩士論文。
余昌樺,2010年,「不同級配之瀝青鋪面二為紋理與摩擦力之關聯性探討」,逢甲大學運輸科技與管理學系碩士論文。
呂佳玲,2003年,「市區道路平坦度評估準則之探討」,國立台灣大學土木工程系碩士論文。
林元生,2002年,「智慧型鋪面檢測車應用於鋪面平坦度之研究」,國立中央大學土木工程學系碩士論文。
林志棟、吳健生,1999年,「道安智慧車之研究(一)技術與應用領域之研究」,交通部運輸研究所報告。
林嘉宏,2008年,「鋪面紋理與摩擦力關聯性之初步探討」,逢甲大學運輸科技與管理學系碩士論文。
林哲緯,2011年,「智慧型紋理量測系統應用於柔性鋪面之驗證」,逢甲大學運輸科技與管理學系碩士論文。
姚志廷,2001年,「以國際糙度指標分析網級柔性鋪面養護最適化之研究」,國立中央大學土木工程學系碩士論文。
施驊庭,1999年,「汽車防撞雷射雷達之研究」,國立中央大學光電科學研究所碩士論文。
徐貫倫,2009年,「二維鋪面紋理模型與摩擦力關聯性之初步探討」,逢甲大學運輸科技與管理學系碩士論文。
梁順榮,2007年,「鋪面平坦度高程檢測及規範探討之研究」,國立中央大學土木工程系碩士論文。
張鈞傑,2006年,「任意頻率調變式雷射測距儀」,國立中央大學光電科學研究所碩士論文。
張孟孔,2008年,「生命週期成本分析鋪面平坦度付款調整因子」,國立成功大學土木工程系博士論文。
曹哲彰,1999年,「以雷射雷達量測對流層頂之溫度、高度分布-與無線電探空儀量測資料之比較、分析」,國立中央大學物理研究所碩士論文。
游俊坤,2000年,「光纖陀螺儀」,國立中央大學光電科學研究所碩士論文。
陸元九,1964,「陀螺及慣性導航原理」,科學出版社,北京。
潘浙湳、李文瑞,2002年,「品質管理」,華泰書局。
劉建賢,2011年,「使用加速度計和陀螺儀之跌倒偵測系統」,大同大學資訊工程研究所碩士論文。
劉建志,2011年,「平坦度檢測儀器適用性比較與規範探討」,國立中央大學土木工程系碩士論文。
陳建達,2009年,「自動化道路檢測設備整合開發與應用於鋪面維護管理之研究」,國立中央大學土木工程系博士論文。
蔡鎮宇,2011年,「鋪面雷射掃描儀之鋪面績效分析」,國立台灣大學土木工程學系博士論文。
交通部頒布「公路工程施工規範」草案之研究,2010年,國立中央大學研究報告。
施工說明書技術規定-第一冊,2005年,交通部公路總局。
施工技術規範,2009年,國道新建工程局。
施工技術規範,2009年,國道高速公路局。
施工綱要規範,2009年,公共工程委員會。
市區道路平坦度驗收規範,2002年,內政部營建署。
|