![]() |
以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:16 、訪客IP:3.14.150.131
姓名 連婉余(Wan-yu Lien) 查詢紙本館藏 畢業系所 土木工程學系 論文名稱 建立風險指標系統及其應用於桃園地區供水系統風險分析
(Developing Risk Indices for the Risk Assessment of Taoyuan Water Supply System)相關論文 檔案 [Endnote RIS 格式]
[Bibtex 格式]
[相關文章]
[文章引用]
[完整記錄]
[館藏目錄]
[檢視]
[下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 台灣普遍利用美國陸軍工兵團研發之缺水指標評估供水系統之特性,然而該指標無法明確描述系統於模擬時期的缺水特性,例如:發生缺水之機率、缺水強度或缺水延時等。因此本研究利用可靠度(Reliability)、恢復度(Resiliency)、脆弱度(Vulnerability)等三項風險指標的概念定義永續性指標(Sustainability Index),藉以表示系統出錯機率、由錯誤回復正常運作的機率、受損程度之嚴重性,評估供水系統之乾旱風險。
本研究選定桃園地區的石門供水系統作為研究區域,以1964~2004年歷史日流量做為入流量資料,利用下游日需水量增加以及系統有效庫容折減等情境進行模擬,探討規線運作與否對於缺水指標和各項風險指標的差異。
研究結果顯示,採取規線操作的供水策略,由於系統先行採取限水措施,致使缺水天數和單次連續缺水量增加,其可靠度值與脆弱度值皆會小於無規線操作的供水策略。當模擬庫容量為80%現行庫容量以上時,規線操作的放水策略能有效提升恢復度,且一旦發生缺水情況,規線操作的系統其恢復度隨著日需水量上升呈現緩慢下滑的趨勢,代表此時運用規線之供水系統出錯時較容易回復正常供水,系統永續性較高。當模擬庫容量低於80%現行庫容量,此時缺水情況加劇,規線運用與否對於系統回復供水之能力沒有太大影響。
永續性指標是以各項風險指標的連乘積表示,藉此評估各項風險指標間不同的狀況。模擬結果發現永續性指標多被恢復度和脆弱度影響,受可靠度影響極小。當系統庫容量設為80%現行庫容量以上時,規線操作能有效提升永續性指標(Sustainability Index),系統維持穩定供水的能力較佳。
摘要(英) In Taiwan, Shortage Index (SI) developed by Hydraulic Engineering Center of U.S. Army Corps of Engineers is traditionally applied to evaluate water supply system. However, Shortage Index is limited because it does not describe the characteristic about the water shortage events. This study uses factors such as reliability, resiliency and vulnerability as indicators. These indicators are meant to represent the possibility of deficit event happened, the possibility of the system recovered after the occurrence of a failure, and the severity of its damage, respectively. Sustainability Index, combining reliability, resiliency and vulnerability, is defined in this study to estimate drought risk of the system.
The Taoyuan water supply system was chosen as a case study. To take into account cases where water demand increased or storage capacity decreased, this study utilized inflow data from 1964 to 2004 to simulate the difference between the application of the hedging and unrestricted operation.
According to the result, the system adopting the hedging would extend the duration of the failure event. Although it reduces the value of reliability and vulnerability, the value of resiliency would be promoted especially in those cases where the capacity are set to be more than 80% of the current capacity.
In terms of Sustainability Index, the operation of the hedging is better than the unrestricted operation. It is particularly significant in those cases where the capacity are set to be more than 80% of the current capacity.
關鍵字(中) ★ 恢復度
★ 脆弱度
★ 永續性指標
★ 風險分析
★ 可靠度關鍵字(英) ★ risk analysis
★ sustainability index
★ vulnerability
★ resiliency
★ reliability論文目次 摘要 I
ABSTRACT II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 P.1
1.1 研究背景 P.1
1.2 研究目的 P.2
1.3 研究架構 P.3
1.4 研究流程 P.4
第二章 文獻回顧 P.5
2.1 相關缺水指標 P.5
2.2 風險分析與管理 P.14
2.2.1 相關風險指標 P.14
2.2.2 相關分析方法 P.15
2.3 永續性指標 P.17
2.4 缺水容忍度 P.18
第三章 研究方法與理論分析 P.20
3.1 風險分析 P.20
3.1.1 可靠度(Reliability, α) P.20
3.1.2 恢復度(Resiliency, β) P.21
3.1.3 脆弱度(Vulnerability, γ) P.23
3.1.4 永續性指標(Sustainability Index, κ) P.24
3.2 缺水指標(Shortage Index, SI) P.25
3.3 研究區域 P.26
3.3.1 石門水庫概述 P.27
3.3.2 淨水場設施概述 P.32
3.4 供水規則 P.34
3.4.1 供水順序 P.34
3.4.2 石門水庫運用要點 P.35
第四章 案例分析 P.37
4.1 規線運作分析 P.39
4.2 缺水指標(Storage Index, SI)之比較 P.40
4.3 風險指標之比較 P.42
4.3.1 可靠度(Reliability, α) P.42
4.3.2 恢復度(Resiliency, β) P.44
4.3.3 脆弱度(Vulnerability, γ) P.46
4.3.4 永續性指標(Sustainability Index, κ) P.51
第五章 結論與建議 P.58
5.1 結論 P.58
5.2 建議 P.60
第六章 參考文獻 P.62
參考文獻 1. Cutter, S. L., “Vulnerability to environmental hazard”, Progress in Human Geography, 20(4), pp.529-539, 1996.
2. Fiering M.B., “A screening model to quantify resilience”, Water Resource Research 18(1), pp.27-32, 1982a.
3. Fiering M.B., “Alternative indices of resilience”, Water Resource Research, 18(1), pp.33-39, 1982b.
4. Huang W.-C. & Yuan L.-C., “A drought early warning system on real-time multireservoir operations” Water Resource Research, 40, W06401, 2004.
5. Huang W.-C. & Chou C.-C., “Drought early warning system in reservoir operation: theory and practice”, Water Resource Research, 41, W11406, 2005.
6. Hashimoto, T., Stedinger, J. R. & Loucks, D. P., “Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation”, Water Resource Research, 18(1), pp.14-20, 1982.
7. Holling, C. S., “Resilience and stability of ecological systems”, Annual Review Ecology and Systematics, 4, pp.1-23, 1973.
8. IPCC, “Climate Change 2007: The Physical Science Basis, Summary for Policymakers”, Contribution of Working Group to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Paris, 2007.
9. Jinno, K., Zongxue, X., Kawamura, A. & Tajiri K., “Risk assessment of water supply system during drought”, Water Resources Development, 11(2), pp.185-204, 1995.
10. Jain S. K., “Investigating the behavior of statistical indices for performance assessment of a reservoir”, Journal of Hydrology, 391, pp.90-96, 2010.
11. Kjeldsen, T. R. & Rosbjerg, D., “Choice of reliability, resilience and vulnerability estimators for risk assessments of water resource system”, Hydrological Sciences Journal, 49(5), pp.755-767, 2004.
12. Kundzewicz, Z.W. & Kindler, J., “Multiple criteria for evaluation of reliability aspects of water resource system”, Modelling and Management of Sustainable Basin-scale Water Resources Systems, pp.217-224, 1995.
13. Loucks, D. P., “Quantifying trends in system sustainability”, Hydrological Sciences-Journal, 42(4), pp.513-530, 1997.
14. Mondal, M. S., Chowdhury, J. U. & Ferdous Md. R., “Risk-based evaluation for meeting future water demand of Brahmaputra floodplain within Bangladesh”, Water Resource Management, 24, pp.853-869, 2010.
15. Melchers R.E., “On the ALARP approach to risk management”, Reliability Engineering and System Safety 61, 71, pp.201-208, 2000.
16. McKee, T. B., N. J. Doesken & J. Kleist, “The relationship of drought frequency and duration to time scales”, Anais American Meteorological Society, Boston, pp. 179~184, 1993.
17. Palmer W.C., “Meteorological drought”, U.S. Water Bureau Research Paper, pp.45-58, 1965.
18. Shafer, B. A. & L. E. Dezman, “Development of a surface water supply index (SWSI) to assess the severity of drought conditions in snow pack runoff areas”. Proceedings of the Western Sow Conference, pp. 164~175, 1982.
19. Stewart JI, “Optimizing crop production through control of water and salinity levels in the soil” Utah Water Research Laboratory, College of Engineering, Utah State University (Logan), 1977.
20. Vogel, R.M. & Bolognese, R.A., “Storage-reliability-resilience-yield relation for over-year water supply system”, Water Resource Research, 31(3), pp.645-654, 1995.
21. Xu Z., Jinno, K., Kawamura, A., Takesaki, S. & Ito K., “Performance risk analysis for Fukuoka water supply system”, Water Resource Management, 12, pp.13-30, 1998.
指導教授 吳瑞賢(Ray-shyan Wu) 審核日期 2012-7-19 推文 plurk
funp
live
udn
HD
myshare
netvibes
friend
youpush
delicious
baidu
網路書籤 Google bookmarks
del.icio.us
hemidemi
myshare