參考文獻 |
REFERENCES
1. N. Q. Minh, “Solid Oxide Fuel Cell Technology-Features and Applications,” Solid State Ionics, Vol. 174, pp. 271-277, 2004.
2. R. Bove and S. Ubertini, Modeling Solid Oxide Fuel Cells Methods, Procedures and Techniques, 1st Ed., Springer, New York, 2008.
3. T. L. Wen, D. Wang, M. Chen, H. Tu, Z. Lu, Z. Zhang, H. Nie, and W. Huang, “Material Research for Planar SOFC Stack,” Solid State Ionics, Vol. 148, pp. 513-519, 2002.
4. M. Radovic and E. Lara-Curzio, “Mechanical Properties of Tape Cast Nickel-Based Anode Materials for Solid Oxide Fuel Cells Before and After Reduction in Hydrogen,” Acta Materialia, Vol. 52, pp. 5747–5756, 2004.
5. G. Kaur, O. P. Pandey, and K. Singh, “Interfacial Study Between High Temperature SiO2-B2O3-AO-La2O3 (A= Sr, Ba) Glass Seals and Crofer 22APU for Solid Oxide Fuel Cell Applications,” International Journal of Hydrogen Energy, Vol. 37, pp. 6862-6874, 2012.
6. J. W. Fergus, “Sealants for Solid Oxide Fuel Cells,” Journal of Power Sources, Vol. 147, pp. 46-57, 2005.
7. J. Fergus, R. Hui, X. Li, D. P. Wilkinson, and J. Zhang, Solid Oxide Fuel Cells: Materials Properties and Performance, CRC Press, New York, USA, 2008.
8. C.-K. Liu, T.-Y. Yung, and K.-F. Lin, “Effect of La Addition on the Thermal and Crystalline Properties of SiO2-B2O3-Al2O3-BaO Glasses,” Proceedings of the Annual Conference of the Chinese Ceramic Society, 2007 (CD-ROM). (in Chinese)
9. C.-K. Liu, T.-Y. Yung, S.-H. Wu, and K.-F. Lin, “Study on a SiO2-B2O3-Al2O3-BaO Glass System for SOFC Applications,” Proceedings of the MRS_Taiwan Annual Meeting, 2007 (CD-ROM). (in Chinese)
10. C.-K. Liu, T.-Y. Yung, and K.-F. Lin, “Isothermal Crystallization Properties of SiO2-B2O3-Al2O3-BaO Glass,” Proceedings of the Annual Conference of the Chinese Ceramic Society, 2008 (CD-ROM). (in Chinese)
11. H.-T. Chang, “High-Temperature Mechanical Properties of a Glass Sealant for Solid Oxide Fuel Cell,” Ph.D. Thesis, National Central University, 2010.
12. J.-H. Yeh, “Analysis of High-Temperature Mechanical Durability for the Joint of Glass Ceramic Sealant and Metallic Interconnect for Solid Oxide Fuel Cell,” M.S. Thesis, National Central University, 2011.
13. P. A. Lessing, “A Review of Sealing Technologies Applicable to Solid Oxide Electrolysis Cells,” Journal of Materials Science, Vol. 42, pp. 3465-3476, 2007.
14. C.-K. Lin, T.-T. Chen, Y.-P. Chyou, and L.-K. Chiang, “Thermal Stress Analysis of a Planar SOFC Stack,” Journal of Power Sources, Vol. 164, pp. 238-251, 2007.
15. A.-S. Chen, “Thermal Stress Analysis of a Planar SOFC Stack with Mica Sealants,” M.S. Thesis, National Central University, 2007.
16. C.-K. Lin, L.-H. Huang, L.-K. Chiang, and Y.-P. Chyou, “Thermal Stress Analysis of a Planar Solid Oxide Fuel Cell Stacks: Effects of Sealing Design,” Journal of Power Sources, Vol. 192, pp. 515-524, 2009.
17. Y.-S. Chou, J. W. Stevenson, and P. Singh, “Effect of Pre-Oxidation and Environmental Aging on the Seal Strength of a Novel High-Temperature Solid Oxide Fuel Cell (SOFC) Sealing Glass with Metallic Interconnect,” Journal of Power Sources, Vol. 184, pp. 238-244, 2008.
18. V. A. Haanappel, V. Shemet, I. C. Vinke, and W. J. Quadakkers, “A Novel Method to Evaluate the Suitability of Glass Sealant-Alloy Combinations under SOFC Stack Conditions,” Journal of Power Sources, Vol. 141, pp. 102-107, 2005.
19. K. S. Weil, J. E. Deibler, J. S. Hardy, D. S. Kim, G.-G. Xia, L. A. Chick, and C. A. Coyle, “Rupture Testing as a Tool for Developing Planar Solid Oxide Fuel Cell Seals,” Journal of Materials Engineering and Performance, Vol. 13, pp. 316-326, 2004.
20. F. Smeacetto, M. Salvo, M. Ferraris, V. Casalegno, P. Asinari, and A. Chrysanthou, “Characterization and Performance of Glass-Ceramic Sealant to Join Metallic Interconnects to YSZ and Anode-Supported-Electrolyte in Planar SOFCs,” Journal of the European Ceramic Society, Vol. 28, pp. 2521-2527, 2008.
21. E. V. Stephens, J. S. Vetrano, B. J. Koeppel, Y. Chou, X. Sun, and M. A. Khaleel, “Experimental Characterization of Glass-Ceramic Seal Properties and their Constitutive Implementation in Solid Oxide Fuel Cell Stack Models,” Journal of Power Sources, Vol. 193, pp. 625-631, 2009.
22. J. Malzbender, J. Monch, R. W. Steinbrech, T. Koppitz, S. M. Gross, and J. Remmel, “Symmetric Shear Test of Glass-Ceramic Sealants at SOFC Operation Temperature,” Journal of Materials Science, Vol. 42, pp. 6297-6301, 2007.
23. Y.-S. Chou, J. W. Stevenson, and P. Singh, “Effect of Aluminizing of Cr-Containing Ferritic Alloys on the Seal Strength of a Novel High-Temperature Solid Oxide Fuel Cell Sealing Glass,” Journal of Power Sources, Vol. 185, pp. 1001-1008, 2008.
24. F. Smeacetto, M. Salvo, P. Leone, M. Santarelli, and M. Ferraris, “Performance and Testing of Joined Crofer22APU-Glass-Ceramic Sealant-Anode Supported Cell in SOFC Relevant Conditions,” Materials Letters, Vol. 65, pp. 1048-1052, 2011.
25. J. Mihans, M. Khaleel, X. Sun, and M. Tehrani, “Creep Properties of Solid Oxide Fuel Cell Glass-Ceramic Seal G18,” Journal of Power Sources, Vol. 195, pp. 3631-3635, 2010.
26. D. W. Richerson, Modern Ceramic Engineering, 2nd Ed., Marcel Dekker, New York, USA, 1992.
27. N. E. Dowling, Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue, 3rd Ed., Prentice Hall, New Jersey, USA, 2007.
28. J. Milhans, D. S. Li, M. Khaleel, X. Sun, M. S. Al-Haik, A. Harris, and H. Garmestani, “Mechanical Properties of Solid Oxide Fuel Cell Glass-Ceramic at High Temperatures,” Journal of Power Sources, Vol. 196, pp. 5599-5603, 2011.
29. J. Malzbender, R. W. Steinbrech, and L. Singheiser, “Determination of the Interfacial Fracture Energies of Cathodes and Glass Ceramic Sealants in a Planar Solid-Oxide Fuel Cell Design,” Journal of Material Research, Vol. 18, pp. 929-934, 2003.
30. “Standard Test Method for Monotonic Equibiaxial Flexural Strength of Advanced Ceramics at Ambient Temperature,” ASTM Standard C1499, ASTM International, West Conshohocken, PA, USA, 2008.
31. R. W. Schmitt, K. Blank, and G. Schonbrunn, “Experimentelle Spannungsanalyse zum Doppelringverfahren,” Sprechsaal, Vol. 116, pp. 397-409, 1983. (in German)
32. Y.-T. Chiou and C.-K. Lin, “Effects of Nb and W Additions on High-Temperature Creep Properties of Ferritic Stainless Steels for Solid Oxide Fuel Cell Interconnect,” Journal of Power Sources, Vol. 198, pp. 149-157, 2012.
33. J.-Y. Chen, “Analysis of Mechanical Properties for the Joint of Metallic Interconnect and Glass Ceramic in Solid Oxide Fuel Cell,” M.S. Thesis, National Central University, 2010.
34. G. Fantozzi, J. Chevalier, C. Olagnon, and J. L. Chermant, “Creep of Ceramic Matrix Composites,” pp. 115-162 in Comprehensive Composite Materials, Vol. 4: Carbon/Carbon, Cement, and Ceramic Matrix Composites, edited by A. Kelly, and C. Zweben, Pergamon, Fresno, USA, 2000.
REFERENCES
A1. P. G. Charalambides, J. Lund, A. G. Evans, and R. M. McMeeking, “A Test Specimen for Determining the Fracture Resistance of Bimaterial Interfaces,” Journal of Applied Mechanicals, Vol. 56, pp. 77-82. 1989.
A2. G. D. Quinn and R. C. Bradt, “On the Vickers Indentation Fracture Toughness Test,” Journal of the American Ceramic Society, Vol. 90, pp. 673-680, 2007.
A3. R. C. Hibbeler, Statics and Mechanics of Materials, SI Ed., Prentice Hall, Singapore, 2004.
A4. J. Malzbender and R. W. Steinbrech, “Mechanical Properties of Coated Materials and Multi-Layered Composites Determined Using Bending Methods,” Surface and Coatings Technology, Vol. 176, pp. 165-172, 2004.
A5. “Standard Test Method for Vickers Indentation Hardness of Advanced Ceramics,” ASTM Standard C1327, ASTM International, West Conshohocken, PA, USA, 2012.
A6. J. H. Gong, “Determining Indentation Toughness by Incorporating True Hardness into Fracture Mechanics Equation,” Journal of the European Ceramic Society, Vol. 19, pp. 1585-1592, 1999.
A7. P. Chantikul, G. R. Anstis, B. R. Lawn, and D. B. Marshall, “A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: II, Strength Method,” Journal of the American Ceramic Society, Vol. 64, pp. 539-543, 1981.
|