博碩士論文 993203038 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:62 、訪客IP:18.119.136.84
姓名 劉俊緯(Jyun-wei Liou)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 不同過時效處理對Al-4.2Zn-1.2Mg合金的微結構影響與陽極行為和皮膜性質的探討
(The effects of Aging treatment on the microstructure evloution and anodic aluminum oxide films behaviour formed on Al-4.2Zn-1.2Mg aluminum alloy)
相關論文
★ 7005與AZ61A拉伸、壓縮之機械性質研究★ 雷射去除矽晶圓表面分子機載污染參數的最佳化分析
★ 球墨鑄鐵的超音波檢測★ 模具溫度對TV前框高亮光澤產品研討
★ 高強度7075-T4鋁合金之溫間成形研究★ 鎂合金燃燒、鑽削加工與表面處理之研究
★ 純鈦陽極處理技術之研發★ 鋁鎂合金陽極處理技術之研發
★ 電化學拋光處理、陽極處理中硫酸流速與封孔處理對陽極皮膜品質之影響★ 電解液溫度與鋁金屬板表面粗糙度對陽極處理後外觀的影響
★ 製程參數對A356鋁合金品質的影響及可靠度的評估★ 噴砂與前處理對鋁合金陽極皮膜品質的影響
★ 鎂合金回收重溶之品質與疲勞性質分析★ 鋁合金熱合氧化膜與陽極氧化膜成長行為之研究
★ 潤滑劑與製程參數對Al-0.8Mg-0.5Si鋁合金擠壓鑄件的影響★ 摩擦攪拌製程對AA5052鋁合金之微觀組織及對陽極皮膜的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究以探討7005鋁合金陽極處理所生成多孔陽極氧化膜為主軸。經由退火、輥軋變形與時效處理後,觀察其微結構、析出物型態。再經過陽極處理,並討論基地微結構對陽極氧化膜的影響。分析陽極過程中電壓與時間(V-t)變化曲線,透過SEM 觀察前製程的微結構對陽極多孔氧化膜生長行為的影響。並利用光電子能譜儀(XPS)分析陽極氧化膜的表面層及介面層(氧化膜/基材)組成成分,且進行AUTOLAB PGSTAT30分析電化學測試。最後使用色度儀分析陽極氧化膜顏色性質。
觀察TEM分析,RSAT(1)晶界附近有差排及析出物,SRAT(1)上有大量差排糾結形成所謂的變形帶。SAT(2)及RSAT(2)受到自然時效影響產生性質回復現象,讓微結構產生硬度軟化,由TEM觀察可發現析出物(MgZn2)尺寸較大且少。觀察V-t曲線,低導電度的RSAT(1)試片具有較高的第一階段電壓及能量消耗。在第二階段可以看到RSAT(1)電壓高,孔徑大。
將陽極試片進行XPS分析,我們得知陽極氧化膜的構成相可能為非晶質氧化鋁(Amorphous alumina;Al-O-H)、水合氧化物(Hydrated oxide;Al(OH)3)、結晶型(Crystallized) AlOOH。在腐蝕測試分析,陽極氧化膜上所形成的水合氧化物(Hydrated oxide;Al(OH)3)會影響陽極試片的孔蝕電位(Epit)。
摘要(英) The aim of the study is to investigate the effect of the anodic aluminum oxide film (AAO film) formed on the 7005 aluminum alloy by using anodizing treatment. Through the manufacturing processes including annealing, artificial aging treatment and cold-rolling, the variation of AAO film of 7005 aluminum alloy revealed especially on its microstructure and the status of precipitate materials. Furthermore, anodize was utilized to explore the influence on the AAO film from the basic structure. Also, voltage-time (V-t) curvature changes in the process of anodizing were recorded. After the above manufacturing processes, the effect of the microstructure on the growing behavior of the porous AAO film was observed by using SEM. In addition, the XPS was utilized to analyze the composition of AAO film surface and interface (film/metal). Then, the electrochemical tests were conducted and recorded by AUTO LAB PGSTAT30 potentiostat. The CIE L*a*b* colorimeter were used to analyzed the AAO film surface Colour properties.
By analyzing the Transmission Electron Microscopy (TEM), we found that near the grain boundary (G.B.) has dislocations and precipitates in RSAT(1) samples. In SRAT(1) sample, the bands developed from dense dislocation walls were called microbands. SAT(2) and RSAT(2) are affected by natural aging and generated the phenomenon of recovery, which lower the hardness. With observing by TEM, the density of precipitates is smaller. In respect to the variation of V-t curvature, the lower the conductivity of RSAT(1) sample, the voltage and the energy consumption of the test fragment with RA sample became higher in step 1. The voltage of the test fragment with RSAT(1) sample became higher in step 2. Concerning the RSAT(1) sample, it is suggested that the pore diameter increases by using the AAO films.
The anodized samples were then analyzed by X-ray Photoelectron Spectroscopy (XPS). We found that the constituted phases in the AAO film are composed by amorphous alumina (Al-O-H), hydrated oxide (Al(OH)3) and crystallite oxide (AlOOH) phases. In the corrosion test, hydrated Al(OH)3 that formed at the subsurface of AAO film were found to inversely influence the pitting potential (Epit) of anodized samples.
關鍵字(中) ★ 硬化陽極處理
★ 陽極處理
★ 極化曲線
★ MgZn2析出相
★ 7005鋁合金
關鍵字(英) ★ hard anodic treatment
★ MgZn2 Precipitate particles
★ 7005 aluminum
★ polarization
★ anodic treatment
論文目次 中文摘要 i
Abstract ii
目錄 iv
圖目錄 vii
表目錄 xii
第一章 前言 1
第二章 理論探討與文獻回顧 2
2-1 鋁合金之特性 3
2-2 鋁合金熱處理技術 3
2-3 鋁合金析出硬化之基本原理 4
2-3-1 擴散現象 4
2-3-2 空孔對G.P. Zone生成的影響 4
2-4 7000系鋁合金之析出強化機制 7
2-4-1 7000系鋁合金兩階段時效(aging)簡介 11
2-4-2 7000系鋁合金輥軋(rolling)簡介 17
2-5 陽極處理 26
2-5-1 陽極膜種類 26
2-5-2 陽極膜生長機制 27
2-5-3 陽極膜生長階段電壓與時間曲線 29
2-6 硬化陽極處理 32
2-6-1 硬化陽極處理與一般陽極處理比較 32
2-6-2 兩階段硬化陽極 33
2-6-3 7000系成分對硬化陽極影響 36

2-7 陽極膜光學性質 38
2-7-1 陽極膜光學性質與陽極孔洞關係 40
2-8 陽極膜封孔 43
2-8-1 熱水封孔 43
2-8-2 鉻酸鹽封孔 44
2-8-3 醋酸鎳封孔 44
2-8-4 熱水封孔與含醋酸鎳成份溶液封孔差異 45
2-9 腐蝕 45
2-9-1 陽極膜腐蝕 47
第三章 實驗方法與步驟 50
3-1 實驗目的 50
3-2 實驗材料及試片準備 50
3-3 實驗儀器 50
3-4 實驗步驟 51
第四章 結果與討論 57
4-1 Al-Zn-Mg合金熱處理與輥軋變形分析 57
4-1-1 SAT(1) 微結構分析 57
4-1-2 RSAT(1) 微結構分析 59
4-1-3 SRAT(1) 微結構分析 59
4-1-4 SAT(2) 微結構分析 60
4-1-5 RSAT(2) 微結構分析 60
4-2 Al-Zn-Mg合金硬化陽極(HA)與一般陽極(MA)氧化膜性質分析 70
4-2-1 硬化陽極(HA)氧化膜性質分析 70
4-2-2 一般陽極(MA)氧化膜性質分析 77

4-3 Al-Zn-Mg合金硬化陽極(HA)與陽極(MA)氧化膜XPS及腐蝕分析 83
4-3-1 硬化陽極(HA)與陽極(MA)氧化膜XPS分析 83
4-3-2 硬化陽極(HA)與陽極(MA)腐蝕分析 88
4-4 Al-Zn-Mg合金硬化陽極(HA)與陽極(MA)氧化膜光學分析 93
4-4-1 硬化陽極(HA)與陽極(MA)氧化膜對L*值的光學影響 93
4-4-2 硬化陽極(HA)與陽極(MA)氧化膜對色度、反射率、吸收值、折射值、能量消耗的光學影響 94
第五章 結論 106
參考文獻 107
附錄一 115

圖目錄
第二章
Fig. 2-1 各種元素在鋁金屬內的擴散係數圖 5
Fig. 2-2 Al-Zn相圖 5
Fig. 2-3 Al-Mg相圖 6
Fig. 2-4 Al-Zn-Mg相圖 6
Fig. 2-5 Al-Zn-Mg-(Cu)合金TTT圖 9
Fig. 2-6 Al-Zn-Mg-Cu合金時效16小時120 oC HRTEM圖 9
Fig. 2-7 7075鋁合金施以低溫輥軋後低溫時效HRTEM圖 10
Fig. 2-8 7010-T76鋁合金TEM圖 10
Fig. 2-9 7005-T73鋁合金TEM圖 10
Fig. 2-10 7020鋁合金時效處理後溫度與硬度比較圖 11
Fig. 2-11 7020鋁合金時效處理後應力與應變曲線圖 12
Fig. 2-12 7020鋁合金單一時效處理135 oC 2小時TEM圖 13
Fig. 2-13 7020鋁合金兩階段時效不同的升溫速率TEM圖 14
Fig. 2-14 7108鋁合金過時效TEM圖 15
Fig. 2-15 7108鋁合金真應力-應變曲線圖 16
Fig. 2-16 7108.50鋁合金過時效TEM圖 16
Fig. 2-17 7075合金在低溫輥軋及常溫輥軋不同應變下的EBSD形貌圖(a)固溶材料(b)低溫輥軋下真應變2.3(c)常溫輥軋下真應變2.3(d)低溫輥軋下真應變3.4(e)常溫輥軋下真應變3.4 18
Fig. 2-18 7075合金在低溫輥軋及常溫輥軋不同應變下的取向分布差異柱狀圖(a)固溶材料(b)低溫輥軋下真應變2.3(c)常溫輥軋下真應變2.3(d)低溫輥軋下真應3.4(e)常溫輥軋下真應變3.4 19

Fig. 2-19 7075合金在低溫輥軋及常溫輥軋不同應變下的XRD分析圖(a)低溫輥軋 20
(b)常溫輥軋 20
Fig. 2-20 7075鋁合金在真應變2.3下TEM圖(a)低溫輥軋(b)常溫輥軋 20
Fig. 2-21 7075鋁合金在真應變3.4下TEM圖(a)低溫輥軋(b)常溫輥軋 21
Fig. 2-22 7075鋁合金在低溫輥軋、常溫輥軋、固溶處理後時效硬度圖(a)140℃(b)120℃(c)100℃(d)80℃ 22
Fig. 2-23 7075鋁合金XRD分析圖(a)未時效處理(b)已時效處理 23
Fig. 2-24 7075鋁合金DSC分析圖(a)未時效處理(b)已時效處理 24
Fig. 2-25 7030鋁合金固溶處理後拉伸變形10% OM側視圖 25
Fig. 2-26 7030鋁合金固溶處理後拉伸變形10% TEM圖 25
Fig. 2-27 理想多孔陽極氧化鋁膜結構示意圖 26
Fig. 2-28 氧化膜移動示意圖(a)陽離子移動(b)陰離子移動(c)陽離子與陰離子移動(d)陽極氧化膜的離子移動 27
Fig. 2-29 氧化膜形成示意圖(a)初始電場分佈(b)穿透路徑形成(c)局部電場集中 27
Fig. 2-30 氧化膜的孔洞生長程序圖 28
Fig. 2-31 氧化膜孔洞形成之穩定成長圖 28
Fig. 2-32 陽極過程電壓與時間圖 30
Fig. 2-33 不同陽極時間的陽極膜SEM圖(a)0 sec(b)2 sec(c)4 sec(d)5 sec(e)6 sec(f)10 sec
(g)12 sec(h)20 sec 30
Fig. 2-34 不同陽極時間的陽極膜TEM圖(a)3 sec(b)12 sec(c)20 sec 31
Fig. 2-35 5N純鋁硬化陽極與陽極比較圖(a)硬化陽極(0.3 M草酸)與陽極(0.3 M草酸,40℃)電流-時間比較圖(b)硬化陽極與陽極厚度-時間比較圖(c)硬化陽極與陽極在2小時陽極時間下孔洞與截面SEM圖 32
Fig. 2-36 5N純鋁AAO電壓影響圖(a)相同時間下不同電壓硬化陽極孔洞SEM圖(尺規=800 nm)(b) 相同時間下不同電壓孔洞率(P)、孔徑(Dp)、孔與孔之間的距離(Dint) 33

Fig. 2-37 定電壓40 V、50 V下硬化陽極膜FE-SEM圖(a) 上層和(b) 下層表面單一硬化陽極處理40V;(c) 上層和(d) 下層表面二次硬化陽極處理40V;(e) 上層和(f) 下層表面二次硬化陽極處理40V 34
Fig. 2-38 電流密度-孔距-時間比較圖 35
Fig. 2-39 在定電壓40V下障壁層FE-SEM圖(a)200 mA/cm2 (b)100 mA/cm2 (c)80 mA/cm2 (d)30 mA/cm2 35
Fig. 2-40 7075鋁合金硬化陽極處理電壓與時間圖 36
Fig. 2-41 7075鋁合金硬化陽極膜厚斷面SEM圖(a)alloy 1(b)alloy 2 37
Fig. 2-42 電磁波譜圖 38
Fig. 2-43 1050合金硫酸陽極處理反射率圖(a)0-10 sec(b)30-180 sec(c)300-600 sec 41
Fig. 2-44 氧化膜金屬表面上干擾示意圖 42
Fig. 2-45 1050合金硫酸陽極處理反射率圖(a)相同厚度(500 nm)(b)相同時間600 sec 42
Fig. 2-46 陽極氧化膜熱水封孔示意圖 44
Fig. 2-47 陽極氧化膜SEM橫斷面圖(a)熱水封孔(b)醋酸鎳溶液封孔 45
Fig. 2-48 硫酸陽極處理AA7075合金極化曲線圖(pH 2) 48
Fig. 2-49 硫酸陽極處理AA7075合金極化曲線圖(pH 7) 48
Fig. 2-50 硫酸陽極處理AA7075合金之鎳氟封孔SEM圖 49
Fig. 2-51 硫酸陽極處理AA7075合金極化曲線圖(pH 13) 49
第三章
Fig. 3-1 實驗流程圖 56
Fig. 3-2 熱處理流程圖 56
第四章
Fig. 4-1 退火(O)金相圖 62
Fig. 4-2 SAT(1) 金相圖 63
Fig. 4-3 SAT(1) TEM圖 63
Fig. 4-4 RSAT(1) 金相圖 64
Fig. 4-5 RSAT(1) TEM圖 64
Fig. 4-6 SRAT(1) 金相圖 65
Fig. 4-7 SRAT(1) TEM圖 65
Fig. 4-8 SAT(2) 金相圖 66
Fig. 4-9 SAT(2) TEM圖 66
Fig. 4-10 RSAT(2) 金相圖 67
Fig. 4-11 RSAT(2) TEM圖 67
Fig. 4-12 硬化陽極(HA)下電壓-時間-微分曲線圖(a) SAT(1) (b) RSAT(1) (c) SAT(2) (d) RSAT(2) 71
Fig. 4-13 硬化陽極(HA)下SAT(1)不同時間下FE-SEM圖(a)、(b)陽極時間15分鐘(c)、(d)陽極時間135分鐘。 73
Fig. 4-14 硬化陽極(HA)下RSAT(1)不同時間下FE-SEM圖(a)、(b)陽極時間15分鐘(c)、(d)陽極時間135分鐘 74
Fig. 4-15 硬化陽極(HA)下SAT(2)不同時間下FE-SEM圖(a)、(b)陽極時間15分鐘(c)、(d)陽極時間135分鐘 75
Fig. 4-16 硬化陽極(HA)下RSAT(2)不同時間下FE-SEM圖(a)、(b)陽極時間15分鐘(c)、(d)陽極時間135分鐘 76
Fig. 4-17 一般陽極(MA)下電壓-時間-微分曲線圖(a) SAT(1) (b) RSAT(1) (c) SAT(2) (d) RSAT(2) 78
Fig. 4-18 一般陽極(MA)下SAT(1)不同時間下FE-SEM圖(a)陽極時間6秒(b)陽極時間30秒(c)陽極時間300秒(d)陽極時間15分鐘 79
Fig. 4-19 一般陽極(MA)下RSAT(1)不同時間下FE-SEM圖(a)陽極時間6 sec (b)陽極時間30 sec (c)陽極時間300 sec (d) 陽極時間15分鐘 80
Fig. 4-20 一般陽極(MA)下SAT(2)不同時間下FE-SEM圖(a)陽極時間6秒(b)陽極時間30秒(c)陽極時間300秒(d)陽極時間15分鐘 81
Fig. 4-21 一般陽極(MA)下RSAT(2)不同時間下FE-SEM圖(a)陽極時間6秒(b)陽極時間30秒(c)陽極時間300秒(d)陽極時間15分鐘 82
Fig. 4-22 AA7005未封孔硬化陽極(HA)15分鐘下極化曲線圖 90
Fig. 4-24 AA7005未封孔一般陽極(MA)15分鐘下極化曲線圖 90
Fig. 4-23 AA7005已封孔硬化陽極(HA)15分鐘下極化曲線圖 91
Fig. 4-25 AA7005已封孔一般陽極(MA)15分鐘下極化曲線圖 91
Fig. 4-26 不同熱處理製程下硬化陽極(HA)15分鐘的L*、R、k、n、b*、O/metal 對(a)膜厚(b)粗糙度(c)能量消耗的趨勢圖 100
Fig. 4-27不同熱處理製程下一般陽極(MA)15分鐘的L*、R、k、n、b*、O/metal 對(a)膜厚(b)粗糙度(c)能量消耗的趨勢圖 101
Fig. 4-28 不同陽極處理及時間對L*值趨勢圖(a)硬化陽極135分鐘(b)硬化陽極15分鐘(c)一般陽極15分鐘 102
Fig. 4-29 硬化陽極(HA)15分鐘光學性質圖(a)反射率(b)吸收值(c)折射值 103
Fig. 4-30 硬化陽極(HA)135分鐘光學性質圖(a)反射率(b)吸收值(c)折射值 104
Fig. 4-31 一般陽極(MA)15分鐘光學性質圖(a)反射率(b)吸收值(c)折射值 105

表目錄
第二章
Table 2-1 7XXX 鋁合金之析出物的晶體結構及基地性質表 7
Table 2-2 7020鋁合金兩階段時效不同的升溫速率條件表 12
Table 2-3 7020鋁合金兩階段時效不同的升溫速率拉伸測試表 12
Table 2-4 7108鋁合金熱處理條件表 15
Table 2-5 互補色表 40
Table 2-6 AAO膜參數表 43
Table 2-7 醋酸鎳封孔溶液表 45
Table 2-8 AA7075合金不同封孔膜表面成份分析表 47
第三章
Table 3-1 7005合金成分表 50
Table 3-2 XPS在Al 2p, O 1s, Si 2p, Zn 3/2p分析各種成份鍵結能表 55
第四章
Table 4-1 在20 oC/h及30 oC/h(345-205 oC)冷卻速率後空冷退火材料的硬度表(Hv) 62
Table 4-2 五組不同熱處理條件下的材料晶粒與晶界上硬度表(Hv) 68
Table 4-3 7005不同熱處理條件下的材料之性質結論表 69
Table 4-4 硬化陽極(HA)下電壓、氧化時間與各階段的能量消耗表 72
Table 4-5 FE-SEM觀察不同熱處理製程下硬化陽極(HA)試片孔洞率、孔徑尺寸表 72
Table 4-6一般陽極(MA)下電壓、氧化時間與各階段的能量消耗表 78
Table 4-7 FE-SEM觀察不同熱處理製程下一般陽極(MA)試片孔洞率、孔徑尺寸表 79
Table 4-8 硬化陽極(HA)15分鐘下表面層XPS成分分析原子百分比表 86
Table 4-9 硬化陽極(HA)15分鐘下介面層(氧化膜/鋁基材)XPS成分分析原子百分比表 86
Table 4-10 一般陽極(MA)15分鐘下表面層XPS成分分析原子百分比表 87
Table 4-11 一般陽極(MA)15分鐘下介面層(氧化膜/鋁基材)XPS成分分析原子百分比表 87
Table 4-12 硬化陽極(HA)與陽極(MA)封孔前後極化曲線Ecorr與Epit電壓比較表 92
Table 4-13 不同熱處理製程及硬化陽極(HA)時間下的L*、a*、b*值表 96
Table 4-14硬化陽極(HA)下不同熱處理製程的表面粗糙度表 97
Table 4-15 一般陽極(MA)下不同熱處理製程的L*、a*、b*值表 97
Table 4-16 一般陽極(MA)下不同熱處理製程的表面粗糙度表 97
Table 4-17 硬化陽極(HA)封孔後不同熱處理製程的L*、a*、b*值表 98
Table 4-18 一般陽極(MA)封孔後不同熱處理製程的L*、a*、b*值表 98
Table 4-19 硬化陽極(HA)135分鐘下的反射率(R)、吸收值(k)、折射值(n)表 99
Table 4-20 硬化陽極(HA)15分鐘下的反射率(R)、吸收值(k)、折射值(n)表 99
Table 4-21 一般陽極(MA)15分鐘下的反射率(R)、吸收值(k)、折射值(n)表 99
參考文獻 [1] 黃振賢,機械材料,文京圖書股份有限公司,新竹,民國69年
[2] K. I. Hirano , R. P. Agarwala , M. Cohen,“Diffusion of iron, nickel and cobalt in aluminum”,Acta Metallurgica , Vol 10, pp.857-863,1962
[3] American Society for Metals, Metals Handbook Committee and T. Lyman (Eds), Metals handbook:Metallography, Structures and Phase Diagrams, 8th edition, American Society for Metals,1973
[4] M. Chemingui , M. Khitouni , K. Jozwiak ,G. Mesmacque , A. Kolsi,“Characterization of the mechanical properties changes in an Al–Zn–Mg alloy after a two-step ageing treatment at 70 oCand 135 oC”,Materials and Design , Vol 31, pp.3134-3139,2010
[5] S. K. Panigrahi , R. Jayaganthan,“Development of ultrafine grained high strength age hardenable Al 7075 alloy by cryorolling”,Materials and Design , Vol 32, pp.3150-3160,2011
[6] Y. H. Zhao , X. Z. Liao , Z. Jin , R. Z. Valiev , Y. T. Zhu,“Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing”,Acta Materialia , Vol 52 , pp.4589-4599,2004
[7] 楊智綱,「高強度航空用7000系鋁合金機械性質、抗應力腐蝕破壞性及焊接熱影響區特性之研究」,國立中央大學,博士論文,桃園,民國90年
[8] R. Jayaganthan , S. K. Panigrahi,“Effect of Cryorolling strain on Precipitation Kinetics of Al 7075 Alloy”,Materials Science forum, Vol 584-586, pp.911-916,2008
[9] P. N. Adler , R. Delasi , G. Geschwind,“Influence of Microstructure on the Mechanical Properties and Stress Corrosion Susceptibility of 7075 Aluminum Alloy”,Metallurgical and Materials Transactions B , Vol 3, pp.3191-3200,1972 
[10] J. C. Werenskiold , A. Deschamps , Y. Brechet,“Characterization and modeling of precipitation kinetics in an Al–Zn–Mg alloy”,Materials Science and Engineering A, Vol 293, pp.267–274,2000
[11] L. Hadjadj , R. Amira , D. Hamana , A. Mosbah,“Characterization of precipitation and phase transformations in Al–Zn–Mg alloy by the differential dilatometry”,Journal of Alloys and Compounds, Vol 462, pp.279–283,2008
[12] R. Ferragut , A. Somoza , A. Tolley , I. Torriani,“Precipitation kinetics in Al–Zn–Mg commercial alloys”,Journal of Materials Processing Technology, Vol 141, pp.35–40,2003
[13] J. J. Thompson , E. S. Tankins , V. S. Agarwala,“A heat treatment for reducing corrosion and stress corrosion cracking susceptibilities in 7xxxx aluminum alloy”,Materials Performance, Vol 26, pp.45-52,1987
[14] L. B. Ber,“Accelerated artificial ageing regimes of commercial aluminium alloys. II- Al–Cu, Al–Zn–Mg–(Cu), Al–Mg–Si–(Cu) alloys”,Materials Science and Engineering A, Vol 280, pp.91–96,2000
[15] J. K. Park,“Influence of Retrogression and Reaging Treatments on the Strength and Stress Corrosion Resistance of Aluminum Alloy 7075-T6”,Materials Science
and Engineering A , Vol 103, pp.223-231,1988
[16] D. Wang , D. R. Ni , Z. Y. Ma,“Effect of pre-Strain and two-step aging on microstructure and stress corrosion cracking of 7050 alloy”,Materials Science and Engineering A , Vol 494 , pp.360-366,2008
[17] W. Feng , X. Baiqing , Z. Yongan , L. Hongwei , L. Zhihui , L. Qiang,“Microstructure and mechanical properties of spray-deposited Al-Zn-Mg-Cu alloy processed through hot rolling and heat treatment”,Materials Science and Engineering A , Vol 518, pp.144-149,2009 
[18] Y. H. Zhao , X. Z. Liao , S. Cheng , E. Ma , Y. T. Zhu,“ Simultaneously Increasing the Ductility and Strength of Nanostructured Alloys”,ADVANCED MATERIALS, Vol 18 , pp.2280-2283,2006
[19] J. Wloka , S. Virtanen,“Detection of nanoscale η-MgZn2 phase dissolution from an Al-Zn-Mg-Cu alloy by electrochemical microtransients”,Surface and Interface Analysis, Vol 40 , pp.1219-1225,2008
[20] 黃清添,「析出製成參數對AA7005鋁擠型合金機械性質與抗應力腐蝕性之影響」,國立台灣科技大學,碩士論文,民國91年
[21] K. Stiller , P. J. Warren , V. Hansen , J. Angenete , J. Gjønnes,“Investigation of precipitation in an Al–Zn–Mg alloy after two-step ageing treatment at 100 oC and 150 oC”,Metallurgical and materials transactions A, Vol.270 , pp.55-63,1999
[22] E. Salamci,“Ageing Behaviour of Spray Cast Al-Zn-Mg-Cu Alloys”,Turkish Journal of Engineering & Environmental Sciences, Vol.25 , pp.681-686,2001
[23] Z. W. Du , Z. M. Sun , B. L. Shao , T. T. Zhou , C.Q. Chen,“Quantitative evaluation of precipitates in an Al–Zn–Mg–Cu alloy after isothermal aging”,Materials Characterization, Vol.56 , pp.121-128,2006
[24] M. Lech-Grega , S. Hawrylkiewicz , M. Richert , W. Szymanski,“Structural parameters of 7020 alloy after heat treatment simulating the welding process”,Materials Characterization, Vol.46 , pp.251-257,2001
[25] I. Westermanna , O. S. Hopperstad , K. Marthinsen , B. Holmedal,“Ageing and work-hardening behaviour of a commercial AA7108 aluminium alloy”,Materials Science and Engineering A, Vol 524, pp.151-157,2009
[26] M. Dumont , W. Lefebvre , B. Doisneau-Cottignies , A. Deschamps,“ Characterisation of the composition and volume fraction of η′ and η precipitates in an Al–Zn–Mg alloy by a combination of atom probe, small-angle X-ray scattering and transmission electron microscopy”,Acta Materialia, Vol 59, pp.2881–2892,2005 
[27] M. Nicolas , A. Deschamps,“Characterisation and modelling of precipitate evolution in an Al–Zn–Mg alloy during non-isothermal heat treatments”,Acta Materialia, Vol 51, pp.6077–6094,2003
[28] S. K. Panigrahi , R. Jayaganthan,“Effect of ageing on microstructure and mechanical properties of bulk, cryorolled, and room temperature rolled Al 7075 alloy”,Journal of Alloys and Compounds, Vol 509, pp.9609-9616,2011
[29] A. Fjeldly , A. Søreng , H. Jørgen Roven,“Strain localisation in solution heat treated Al–Zn–Mg alloys”,Materials Science and Engineering A, Vol 300, pp.165-170,2001
[30] H.Masuda , F. Hasegwa , S. Ono,“Self-Ordering of Cell Arrangement of Anodic Porous Alumina Formed in Sulfuric Acid Solution”,Journal of The Electrochemical Society, Vol.144, pp.L127-L130,1997
[31] G. E. Thompson,“Porous anodic alumina: fabrication, characterization and applications”,Thin Solid Films, Vol.297, pp.192-201,1997
[32] O. Jessensky , F. Muller , U. Gosele,“Self-organized formation of hexagonal pore arrays in anodic alumina”,Appiled Physics Letters, Vol.72, pp.1173-1175,1998
[33] T. S. Shih , P. S. Wei,“Monitoring the progressive development of an anodized film on aluminum”,Journal of the Electrochemical Society, Vol.154, pp.678-683,2007
[34] I. Farnan , R. Dupree , A. J. Forty , Y. S. Jeong , G. E. Thompson , G. C. Wood,“Structural information about amorphous anodic alumina from 27Al MAS NMR”,Philosophical Magazine Letters, Vol.59, pp.189-195,1989
[35] T. P. Hoar , J. Yahalom,“The initiation of pores in anodic oxide films formed on aluminum in acid solutions”,Journal of the Electrochemical Society, Vol.110, pp.614-621,1963
[36] G. C. Wood , J. P. O’Sullivan,“The Anodizing of Aluminium in Sulphate Solutions”,Electrochimica Acta, Vol.15, pp.1865-1876,1970. 
[37] Y. S. Kim , S. I. Pyun , S. M. Moon , J. D. Kim,“The effects of Applied Potential and pH on The Electrochemical Dissolution of Barrier Layer in Porous Anodic Oxide Film on Pure Aluminum”,Corrosion Science, Vol.38, pp.329-336,1996
[38] T. S. Shih , P. S. Wei , Y. S. Yung,“Optical properties of anodic aluminum oxide films on Al1050 alloys”,Surface & Coatings Technology, Vol.202, pp.3298-3305,2008
[39] W. Lee , R. Ji , U. Gosele , K. Nielsch,“Fast fabrication of long-range ordered porous alumina membranes by hard anodization”, nature materials,Vol.5, pp.741-747,2006
[40] K. Nielsch , J. Choi , K. Schwirn , R. B. Wehrspohn , U. Gosele,“Self-ordering regimes of porous alumina: The 10% porosity rule”,Nano Letters,Vol.2, pp.677-680,2002
[41] S. Ono , M. Saito , M. Ishiguro , H. Asoh,“Controlling Factor of Self-Ordering of Anodic Porous Alumina”,Journal of The Electrochemical Society, Vol. 151, pp.473-478,2004
[42] Y Li , Z. Y. Ling , S. S. Chen , J. C. Wang,“Fabrication of novel porous anodic alumina membranes by two-step hard anodization”,Nanotechnology, Vol. 19,pp.225604-225609, 2008
[43] A. K. Mukhopadhyay,“On the Nature of the Fe-Bearing Particles Influencing Hard Anodizing Behavior of AA7075 Extrusion Products”,Metallurgical and materials transactions A, Vol. 29A, pp.979-987,1998
[44] R. Tilley,Colour and the optical properties of materials,WILEY,1999
[45] S. Van Gils , P. Mast , E. Stijns , H. Terryn,“Colour properties of barrier anodic oxide films on aluminium and titanium studied with total reflectance and spectroscopic ellipsometry”,Surface & Coatings Technology ,Vol. 185 ,pp.303–310,2004
[46] S.Wernick , R. Pinner , P. G. Sheasby, The surface treatment and finishing of aluminum and its alloys,Finishing Publication Ltd. ,England, 1987

[47] Y. Zuo , P. H. Zhao , J. M. Zhao,“The influences of sealing methods on corrosion behavior of anodized aluminum alloys in NaCl solutions”,Surface and Coatings Technology ,Vol. 166 , pp.237–242,2003
[48] V. Lopez , M. J. Bartolome , E. Escudero , E. Otero , J. A. Gonzalez,“Comparison by SEM, TEM, and EIS of hydrothermally sealed and cold sealed aluminum anodic oxides”,Journal of the Electrochemical Society, Vol 153, pp.75-82,2006
[49] 劉志維,「鋁鎂合金陽極處理技術之研發」,國立中央大學,碩士,民國91年
[50] O. J. Murphy , J. S. Wainright , J. J. Lenczewski , J. H. Gibson , M. W. Santana,“Spectroscopic Investigations of Porous and Sealed Anodic Alumina Films”,Journal of the Electrochemical Society Vol 136 , pp.3518-3525,1989
[51] 柯賢文,腐蝕及其防制,全華科技圖書出版社,民國87年
[52] J. J. Ren , Y. Zuo,“The growth mechanism of pits in NaCl solution under anodic films on aluminum”,Surface and Coatings Technology, Vol 191, pp.311-316,2005
[53] V. Moutarlier , M. P. Gigandet , J. Pagetti,“Characterisation of pitting corrosion in sealed anodic films formed in sulphuric,sulphuric/molybdate and chromic media”,Applied Surface Science ,Vol 206, pp.237-249,2003
[54] N. Voevodin , C. Jeffcoate , L. Simon , M. Khobaib , M. Donley,“Characterization of pitting corrosion in bare and sol–gel coated aluminum 2024-T3 alloy”,Surface and Coatings Technology, Vol 140, pp.29-34,2001
[55] S. Feliu Jr. , Ma. J. Bartolomé , J. A. González , S. Feliu,“XPS Characterization of Porous and Sealed Anodic Films on Aluminum Alloys”,Journal of The Electrochemical Society, Vol.154, pp.C241-C248,2007
[56] J. F. Moulder , W. F. Stickle , P. E. Sobol , K. D. Bomben(Eds.) , Handbook of X Ray Photoelectron Spectroscopy, Physical Electronics, 1995-02-01
[57] W. F. Gale and T. C. Totemeier(Eds) , Smithells Metals Reference Book, 8th edition, Butterworth-Heinemann, Oxford,2004 
[58] M. Chemingui , M. khitouni , G. Mesmacque , A. W. Kolsi,“Effect of heat treatment on plasticity of Al-Zn-Mg alloy:Microstructure evolution and mechanical properties”,Physics Procedia , Vol 2, pp.1167-1174,2009
[59] K. G. Krishna , K. Sivaprasad , K. Venkateswarluc , K. C. Hari Kumar,“Microstructural evolution and aging behavior of cryorolled Al–4Zn–2Mg alloy”,Materials Science and Engineering A, Vol 535, pp.129-135,2012
[60] T. S. Shih , P. C. Chen , Y. S. Huang,“Effects of the hydrogen content on the development of anodic aluminum oxide film on pure aluminum”,Thin Solid Films, Vol 519, pp.7817-7825,2011
[61] S. Feliu Jr. , J. A. Gonzalez , V. Lopez , M. J. Bartolome , E. Escudero , E. Otero,“Characterisation of porous and barrier layers of anodic oxides on different aluminium alloys”,Journal of Applied Electrochemistry, Vol 37, pp.1027-1037,2007
[62] C. M. Abreu , M. J. Cristobal , R. Figueroa , G. Pena , M. C. Perez,“An XPS study on the influence of nitrogen implantation on the passive layers developed on different tempers of AA7075 aluminum alloy”,Surface and Interface Analysis, Vol 42, pp.592-596,2010
[63] M. Saenz de Miera , M. Curioni , P. Skeldon , G. E. Thompson,“The behaviour of second phase particles during anodizing of aluminium alloys”,Corrosion Science, Vol. 52 , pp.2489–2497,2010
[64] H. Habazaki , X. Zhou , K. Shimizu , P. Skeldon , G. E. Thompson , G.C. Wood,“Incorporation and mobility of zinc ions in anodic alumina films”,Thin Solid Films, Vol. 292 , pp.150–155,1997

[65] G. E. Thomson , P. Skeldon , G. C. Wood , X. Zhou , U. Kressig , E. Wieser , H. Habazaki , K. Shimizu,“Elastic Recoil Detection Analysis (ERDA), RBS and TEM Study of Barrier Film Formation on Al-4.5 at.% Mg-0.05 at.% Cu Alloy”,Surface and Interface Analysis , Vol. 27 , pp.57–62,1999
[66] Y. Liu , M. A. Arenas , P. Skeldon , G. E. Thompson , P. Bailey , T. C. Q. Noakes , H. Habazaki , K. Shimizu,“Anodic behaviour of a model second phase: Al–20at.%Mg–20at.%Cu”,Corrosion Science, Vol. 48 , pp.1225–1248,2006
[67] N. Birbilis , R. G. Buchheit,“Electrochemical Characteristics of Intermetallic Phases in Aluminum Alloys”,Journal of The Electrochemical Society, Vol. 152 , pp.B140–B151,2005
[68] K. Mansouri , K. Ibrik , N. Bensalah , A. Abdel-Wahab,“Anodic Dissolution of Pure Aluminum during Electrocoagulation Process: Influence of Supporting Electrolyte, Initial pH, and Current Density”,Industrial & Engineering Chemistry Research, Vol. 50 , pp.13362–13372,2011
[69] N. Tabrizian , H. N. Hansen , P. E. Hansen , R. Ambat , P. Moller,“Influence of annealing and deformation on optical properties of ultra precision diamond turned and anodized 6060 aluminium alloy”,Surface & Coatings Technology, Vol. 204, pp.2632–2638,2010
[70] 李正中,薄膜光學與鍍膜技術,藝軒圖書出版社,台北,民國95年
[71] J. Wang , C. W. Wang , Y. Li , W. M. Liu,“Optical constants of anodic aluminum oxide films formed in oxalic acid solution”,Thin Solid Films, Vol. 516, pp.7689–7694,2008
指導教授 施登士(Teng-shih Shih) 審核日期 2012-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明