參考文獻 |
[1] Gregor, H., Fuel cell technology hand book, CRC Press, Germany, 2003.
[2] James, L., Andrew, D., Fuel Cell Systems Explained 2nd, U.K., 2003.
[3] 方良吉等編著,2010年能源產業技術白皮書,第一版,經濟部能源局,台北市,民國九十九年。
[4] 張軒維,加壓型固態氧化物燃料電池型能與阻抗之定量量測與分析,碩士論文,國立中央大學,2011。
[5] Park, S., Kim, T.S., Comparison between pressurized design and ambient pressure design of hybrid solid oxide fuel cell-gas turbine system,J. Power Sources, Vol. 163,pp.490-499,2006
[6] Zhou, L., Cheng, M., Yi, B., Dong, Y., Cong, Y., Yang, W., Performance of an anode-supported tubular solid oxide fuel cell (SOFC) under pressurized conditions, Electrochi. Acta, Vol. 53, pp. 5195-5198, 2008.
[7] Seidler, S., Henke, M., Kallo, J., Bessler, W.G., Maier, U., Friedrich, K.A., Pressurized solid oxide fuel cells: experimental studies and modeling, J. Power Sources, Vol. 196, pp. 7195-7202, 2010.
[8] Sun, C. and Stimming, U., Recent anode advances in solid oxide fuel cells, J. Power Sources, Vol. 171, pp. 247-260, 2007.
[9] Clemmer, R. M.C. and Corbin, S. F., The influence of pore and Ni morphology on the electrical conductivity of porous Ni/YSZ composite anodes for use in solid oxide fuel cell applications, Solid State Ionics, Vol. 180, pp. 721-730, 2009.
[10] Haanappel, V.A.C., Mertens, J., Rutenbeck, D., Tropartz, C., Herzhof, W., Sebold, D. and Tietz, F., Optimisation of processing and microstructural parameters of LSM cathodes to improve the electrochemical performance of anode-supported SOFCs, J. Power Sources, Vol. 141, pp. 216-226, 2005.
[11] de Boer, B., Gonzalez, M., Bouwmeester, H.J.M. and Verweij, H., The effect of the presence of fine YSZ particles on the performance of porous nickel electrodes, Solid State Ionics, Vol. 127, pp. 269-276, 2000.
[12] Mogensen, M., Jensen, K. V., Jørgensen, M. J. and Primdahl, S., Progress in understanding SOFC electrodes, Solid State Ionics, Vol. 150, pp. 123-129, 2002.
[13] Peter, C., Grain-Size Effects in Nanoscaled Electrolyte and Cathode Thin Films for Solid Oxide Fuel Cells, Ph.D. Thesis, Universitätsverlag Karlsruhe, Karlsruhe (2009).
[14] CRC Handbook of chemistry and physics, 72st Ed., Lide, D.R., Ed., CRC Press: Boca Raton, FL., 1991.
[15] Hamann, C.H., Hamnett, A., Vielstich, W., Electrochemistry, J. Wiley & Sons, New York, 1998.
[16] Yang, W.J., Park, S.K., Kim, T.S., Kim, J.H., Sohn, J.L., Ro, S.T., Design performance analysis of pressurized solid oxide fuel cell/gas turbine hybrid systems considering temperature constrains, J. Power Sources, Vol. 160, pp. 462-472, 2006.
[17] Veyo, S.E., Shocking, L.A., Dederer, J.T., Gillett, J.E. and Jundberg, E.L., Tubular Solid Oxide Fuel Cell/Gas Turbine Hybrid Cycle Power Systems:Status, ASME J. Engineering for Gas Turbines and Power 124(2002) 845-849.
[18] Lundberg, W.L., Veyo, S.E. and Moeckel, M.D., A High-Efficiency Solid Oxide Fuel Cell Hybrid Power System Using the Mercury 50 Advanced Tubine System Gas Turbine, ASME J. Engineering for Gas Turbines and Power 125(2003) 51-58.
[19] Campanari, S., Full Load and Part-Load Performance Prediction for Intrated SOFC and Microtubine System, ASME J. Engineering for Gas Turbines and Power 122(2000) 239-246.
[20] Li, Y., Weng, Yiwu, Performance study of a solid oxide fuel cell and gas turbine hybrid system designed for methane operating with non-designed fuels, J. Power Sources, Vol. 196, pp. 3824-3835, 2011.
[21] Virkar, A.V., Fung, K.Z., Singhal, S.C., The effect of pressure on solid oxide fuel cell performance, Proceedings of the Third International Symposium on Ionic and Mixed Conducting Ceramics, 1997.
[22] Ni, M., Leung, M.K.H., Leung, D.Y.C., Parametric study of solid oxide fuel cell performance, Energy Conv. Manag., Vol. 48, pp. 1525-1535, 2007.
[23] Bo, C., Yuan, C. Zhao, X., Wu, C.B., Li, M.Q., Parametric analysis of solid oxide fuel cell, Clean Techn. Environ. Policy, Vol. 11, pp. 391-399, 2009.
[24] Patcharavorachot, Y., Arpornwichanop, A., Chuachuensuk, A., Electrochemical study of a planar solid oxide fuel cell: role of support structures, J. Power Sources, Vol. 177, pp. 254-261, 2008.
[25] Recknagle, K.P., Ryan, E.M., Koeppel, B.J., Mahoney, L.A., Khaleel, M.A., Modeling of electrochemistry and steam-methane reforming performance for simulating pressurized solid oxide fuel cell stacks, J. Power Sources, Vol. 195, pp. 6637-6644, 2010.
[26] Henke, M., Kallo, J., Friedrich, K.A., Bessler, W.G., Influence of pressurization on SOFC performance and durability: a theoretical study, Fuel Cells, in press (doi:10.1002/fuce.201000098).
[27] Hashimoto, S., Nishino, H., Liu, Y., Asano, K., Mori, M., Funahashi, Y., Fujishiro, Y., Effects of Pressurization on Cell Performance of a Microtubular SOFC with Sc-Doped Zirconia Electrolyte, J. Electrochemical Society, Vol. 155 (6), pp. B587-B591, 2008
[28] Hashimoto, S., Nishino, H., Liu, Y., Asano, K., Mori, M., Funahashi, Y., Fujishiro, Y., Development of Evaluation Technologies for Microtubular SOFCs Under Pressurized Conditions
[29] Hashimoto, S., Liu, Y., Asano, K., Yoshiba, F., Mori, M., Funahashi, Y., Fujishiro, Y., Power Generation Properties of Microtubular Solid Oxide Fuel Cell Bundle Under Pressurized Condition, J. Fuel Cell Sci. Technol.,5(8) (2011) p.021010
[30] Lim, T.H., Song, R.H., Shin, D.R., Yang, J.I., Jung, H., Vinke, I.C., Yang, S.S., Operating characteristics of a 5 kW class anode-supported planar SOFC stack for a fuel cell/gas turbine hybrid system, Int. J. Hydro. Energy, Vol. 33, pp. 1076-1083, 2008.
[31] Jensen, S.H., Sun, X., Ebbesen, S.D., Knibbe, R., Mogensen, M., Hydrogen and synthetic fuel production using pressurized solid oxide electrolysis cells, Int. J. Hydro. Energy, Vol. 35, pp. 9544-9549, 2010.
[32] Kikuchi, R., Yano, T., Takeguchi, T., Eguchi, K., Characteristics of anodic polarization of solid oxide fuel cells under pressurized conditions, Solid State Ionics, Vol. 174, pp. 111-117, 2004.
[33] Huang, Q.A., Hui, R., Wang, B. and Zhang, J., A review of AC impedance modeling and validation in SOFC diagnosis, Electrochem. Acta, Vol. 52, pp. 8144-8164, 2007.
[34] Kim, C.H., Pyun, S.L. and Kim, J.H., An investigation of the capacitance dispersion on the fractal carbon electrode with edge and basal orientations, Electrochem. Acta, Vol. 48, pp. 3455-3463, 2003.
[35] Jorcin, J.B., Orazem, M.E., Pébére, N. and Tribollet, B., CPE analysis by local electrochemical impedance spectroscopy, Electrochem. Acta, Vol. 51, pp. 1473-1479, 2006.
[36] Leonide, A., Sonn, V., Weber, A. and Ivers-Tiffée, E., Evaluation and modeling of the cell resistance in anode-supported solid oxide fuel cells, J. Electrochem. Soc., Vol. 155, pp. B36-B41, 2008.
[37] Zhou, X. -D., Pederson, L. R., Templeton, J. W. and Stevenson, J. W., Electrochemical performance and stability of the cathode for solid oxide fuel cells: I. Cross validation of polarization measurements by impedance spectroscopy and current-potential sweep, J. Electrochem. Soc., Vol. 157, Issue 2, pp. B220-B227, 2010.
[38] Shy, S.S., Huang, C.M., Li, H.H., Lee, C.H., The impact of flow distributors on the performance of solid oxide fuel cell - part II: electrochemical impedance measurements, J. Power Sources, Vol. 196, pp. 7555-7563, 2011.
[39] Huang, C.M., Shy, S.S., H.H., Lee, C.H., The impact of flow distributors on the performance of solid oxide fuel cell, J. Power Sources, Vol. 195, pp. 6280-6286, 2010.
[40] Forschungszentrum Julich, FZJ, http://www.fz-juelich.de/portal
[41] Barfod, R., Mogensen, M., Klemensø, T., Hagen, A., Liu, Y.L. and Hendriksen, P.V., Detialed characterization of anode-supported SOFCs by impedance spectroscopy, J. Electrochem. Soc., Vol. 154, pp. B371-B378, 2007.
[42] Singhal, S.C., Adcances in solid oxide fuel cell technology, Solid State Ionics Vol. 135, pp. 305-313, 2000.
[43] Haanappel, V. A. C. and Smith, M. J., A review of standardising SOFC measurement and quality assurance at FZJ, J. Power Sources, Vol. 171, pp. 169-178, 2007.
|