博碩士論文 993203061 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:18.191.125.73
姓名 鄭浩昇(Hao -Sheng)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 加壓型固態氧化物燃料電池量測與分析:壓力、溫度與質量流率效應
(Measurements and Analyses of Pressurized Solid Oxides Fuel Cells: Effects of Pressure, Temperature, and Mass Flow Rates)
相關論文
★ 蚶線形滑轉板轉子引擎設計與實作★ 實驗分析預混紊焰表面密度傳輸方程式及Bray-Moss-Libby模式
★ 低紊流強度預混焰之傳播及高紊流強度預混焰之熄滅★ 預混火焰與尾流交相干涉之實驗研究
★ 自由傳播預混焰與紊流尾流交互作用﹔火焰拉伸率和燃燒速率之量測★ 重粒子於泰勒庫頁提流場之偏好濃度與下沈速度實驗研究
★ 潔淨能源:高效率天然氣加氫燃燒技術與污染排放物定量量測★ 預混焰與紊流尾流交互作用時非定常應變率、曲率和膨脹率之定量量測
★ 實驗方式產生之均勻等向性紊流場及其於兩相流之應用★ 液態紊流噴流動能消散率場與微尺度間歇性 之定量量測
★ 預混焰和紊流尾流交互作用:拉伸率與輻射熱損失效應量測★ 四維質點影像測速技術與微尺度紊流定量量測
★ 潔淨能源:超焓燃燒器研發★ 小型熱再循環觸媒燃燒器之實驗研究及應用
★ 預混紊流燃燒:碎形特性、當量比 和輻射熱損失效應★ 預混甲烷紊焰拉伸量測,應用高速PIV
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文利用本實驗室已建立之高壓雙腔室固態氧化物燃料電池(solid oxide fuel cell, SOFC)性能量測平台,針對含流道板之單電池堆進行電池性能與阻抗頻譜之定量量測與分析,以了解壓力、溫度、流場均勻度與陰陽極流率等效應對加壓型SOFC之影響。實驗平台包含一大型高壓腔體,內置一高溫爐,其中放置一由陽極支撐電池片、crofer-22-APU框架、集電層與一對肋條式陶瓷流道板堆疊而成的單電池堆。實驗結果含三大重點,分別為在不同加壓條件下(1 ~ 5 大氣壓)(1)流場均勻度效應,(2) 溫度效應,和(3)陰、陽極流率變化效應對單電池堆之電池性的影響。(1)利用本研究團隊先前所設計得有導流裝置之流道板(具優化流場均勻度)與未加導流裝置之流道板(具較差之流場均勻度)作比較,發現流場均勻度之改善可有效提升單電池堆之性能,並且此性能提升會隨壓力增加而更加顯著,相關之阻抗頻譜將用以解釋此一結果。(2)在壓力和流率等操作條件固定時,溫度從650℃提升至800℃下,雖然單電池堆性能會隨溫度上升而提高,但開迴路電壓(OCV)反而會些微下降。這是因為溫度提升對阻抗下降有所助益,使電池性能有所提升,此趨勢在壓力1 ~ 5大氣壓中皆相同。在任一固定溫度條件下(T = 650℃、700℃、750℃和800℃,加壓皆會使功率密度與OCV提升,由阻抗頻譜量測資料,可知這是因為活化極化與濃度極化皆會隨著壓力提升而下降。(3)在操作溫度T = 850℃和陽極流率固定(0.5 slpm H2 + 0.5 slpm N2)時,單電池堆性能將會隨陰極空氣流率增加(空氣流率0.5 slpm、0.75 slpm與1 slpm)而提升,且壓力越高,其提升越明顯。但是,陰極流率固定( 0.5 slpm air)時,單電池堆性能並未因陽極流率增加而顯著提升。顯示陰極流率的變化較陽極流率的變化對單電池堆性能之影響較為敏感。本論文所獲得知結果應該有助於未來發展高效率加壓型SOFC結合GT之複合系統。
摘要(英) This thesis uses the recently-established high-pressure double-chamber solid oxide fuel cell (SOFC) testing platform to quantitatively measure cell performance and electrochemical impedance spectra (EIS) of single unit cells with flow distributors, so that the effects of pressure (p), temperature (T), flow uniformity in interconnects, and the flow rates of anode and cathode in pressurized SOFCs can be studied. The testing platform from outside in includes an outer high-pressure chamber, a high-temperature controllable, and a single cell stack (single unit cell + two flow distributors). The single cell stack is consisted of an anode-supported unit cell, the crofer-22-APU supporting frames, and the two current collectors which are sandwiched by a pair of rib-channel flow distributors. The present experimental studies have three parts concerning various effects to the cell performance under elevated pressure conditions (p = 1 ~ 5 atm): (1) The effect of flow uniformity in flow distributors, (2) the effect of operating temperature (T), and(3) the effect of flow rates in both anode and cathode electrodes, as shown below respectively. (1) By comparing two different designs of rib-channel flow distributors using or not using small guide vanes in the same single-cell stack, the one with guide vanes having much higher flow uniformity than that without guide vanes has a better cell performance. Such enhancing performance due to the increasing degree of flow uniformity is found to be even more profound at higher pressure conditions, as can be electrochemical understood and explained by electrochemical impedance spectra (EIS) measurements. (2) While keeping p and the flow rates constant, the single-cell stack performance increases with T at least from 650℃ to 800℃ for all value of p = 1~5 atm studied. However, the open-circuit-voltage (OCV) is slightly reduced by increased T. At any fixed value of T, pressurization can increase OCV and the cell power density. From EIS measurements, it is found that both activation and concentration polarizations decrease with increasing p explaining why the cell performance is increasing with p. (3) At T = 850℃ and fixed anodic flow rate (0.5 slpm H2 + 0.5 slpm N2), the performance of the single-cell stack can be increased by increasing the air flow rates of cathode at least over the range from 0.5 slpm to 1 slpm. This increase is even more profound at higher p. On the other hand, the cell performance of the single-cell stack is rather insensitive to the increase of the anodic flow rates while keeping the cathodic flow rates constant (0.5 slpm air).
These results should be useful to the development of pressurized SOFC integrating with gas turbines for future hybrid power generating system.
關鍵字(中) ★ 壓力效應
★ 高壓雙腔室固態氧化物燃料電池
★ 阻抗頻譜
★ 功率密度
關鍵字(英) ★ high-pressure double-chamber solid oxide fuel ce
論文目次 摘要 I
Abstract III
誌謝 V
目錄 VI
圖表目錄 VIIII
符號說明 XII
第一章 前言 1
1.1 研究動機 1
1.2 問題所在 2
1.3 解決方法 3
1.4 論文綱要 3
第二章 文獻回顧 5
2.1 SOFC之簡介 5
2.1.1 主要元件 5
2.1.2 基本原理 5
2.2 SOFC與氣渦輪機結合之複合系統研究 7
2.3加壓型SOFC之實驗與數值分析 9
2.4電化學阻抗頻譜應用於SOFC之原理 12
第三章 實驗設備與量測方法 18
3.1高壓單電池堆性能測試平台 18
3.2實驗流程與量測操作參數設定 20
第四章 結果與討論 30
4.1流場均勻度對加壓型SOFC之性能與阻抗頻譜影響 30
4.1.1 電池性能 30
4.1.2 阻抗頻譜 31
4.2加壓效應對SOFC之影響 32
4.2.1開迴路電壓(OCV) 32
4.2.2功率密度( Power Density) 35
4.2.3面積比阻抗(ASR) 35
4.3溫度變化對加壓型SOFC之阻抗頻譜影響 36
4.4流量變化對加壓型SOFC之影響 38
4.4.1 陽極流量變化(H2:N2 = 1:1),陰極流量不變 38
4.4.2陰極流量變化,陽極流量不變 39
4.4.3陽極流量中體積比(H2:N2)變化 39
4.4.4陰、陽極流量同時變化(陽極H2:N2 = 1:1) 39
第五章 結論與未來工作 65
5.1 結論 65
5.2 未來工作 66
參考文獻 67
參考文獻 [1] Gregor, H., Fuel cell technology hand book, CRC Press, Germany, 2003.
[2] James, L., Andrew, D., Fuel Cell Systems Explained 2nd, U.K., 2003.
[3] 方良吉等編著,2010年能源產業技術白皮書,第一版,經濟部能源局,台北市,民國九十九年。
[4] 張軒維,加壓型固態氧化物燃料電池型能與阻抗之定量量測與分析,碩士論文,國立中央大學,2011。
[5] Park, S., Kim, T.S., Comparison between pressurized design and ambient pressure design of hybrid solid oxide fuel cell-gas turbine system,J. Power Sources, Vol. 163,pp.490-499,2006
[6] Zhou, L., Cheng, M., Yi, B., Dong, Y., Cong, Y., Yang, W., Performance of an anode-supported tubular solid oxide fuel cell (SOFC) under pressurized conditions, Electrochi. Acta, Vol. 53, pp. 5195-5198, 2008.
[7] Seidler, S., Henke, M., Kallo, J., Bessler, W.G., Maier, U., Friedrich, K.A., Pressurized solid oxide fuel cells: experimental studies and modeling, J. Power Sources, Vol. 196, pp. 7195-7202, 2010.
[8] Sun, C. and Stimming, U., Recent anode advances in solid oxide fuel cells, J. Power Sources, Vol. 171, pp. 247-260, 2007.
[9] Clemmer, R. M.C. and Corbin, S. F., The influence of pore and Ni morphology on the electrical conductivity of porous Ni/YSZ composite anodes for use in solid oxide fuel cell applications, Solid State Ionics, Vol. 180, pp. 721-730, 2009.
[10] Haanappel, V.A.C., Mertens, J., Rutenbeck, D., Tropartz, C., Herzhof, W., Sebold, D. and Tietz, F., Optimisation of processing and microstructural parameters of LSM cathodes to improve the electrochemical performance of anode-supported SOFCs, J. Power Sources, Vol. 141, pp. 216-226, 2005.
[11] de Boer, B., Gonzalez, M., Bouwmeester, H.J.M. and Verweij, H., The effect of the presence of fine YSZ particles on the performance of porous nickel electrodes, Solid State Ionics, Vol. 127, pp. 269-276, 2000.
[12] Mogensen, M., Jensen, K. V., Jørgensen, M. J. and Primdahl, S., Progress in understanding SOFC electrodes, Solid State Ionics, Vol. 150, pp. 123-129, 2002.
[13] Peter, C., Grain-Size Effects in Nanoscaled Electrolyte and Cathode Thin Films for Solid Oxide Fuel Cells, Ph.D. Thesis, Universitätsverlag Karlsruhe, Karlsruhe (2009).
[14] CRC Handbook of chemistry and physics, 72st Ed., Lide, D.R., Ed., CRC Press: Boca Raton, FL., 1991.
[15] Hamann, C.H., Hamnett, A., Vielstich, W., Electrochemistry, J. Wiley & Sons, New York, 1998.
[16] Yang, W.J., Park, S.K., Kim, T.S., Kim, J.H., Sohn, J.L., Ro, S.T., Design performance analysis of pressurized solid oxide fuel cell/gas turbine hybrid systems considering temperature constrains, J. Power Sources, Vol. 160, pp. 462-472, 2006.
[17] Veyo, S.E., Shocking, L.A., Dederer, J.T., Gillett, J.E. and Jundberg, E.L., Tubular Solid Oxide Fuel Cell/Gas Turbine Hybrid Cycle Power Systems:Status, ASME J. Engineering for Gas Turbines and Power 124(2002) 845-849.
[18] Lundberg, W.L., Veyo, S.E. and Moeckel, M.D., A High-Efficiency Solid Oxide Fuel Cell Hybrid Power System Using the Mercury 50 Advanced Tubine System Gas Turbine, ASME J. Engineering for Gas Turbines and Power 125(2003) 51-58.
[19] Campanari, S., Full Load and Part-Load Performance Prediction for Intrated SOFC and Microtubine System, ASME J. Engineering for Gas Turbines and Power 122(2000) 239-246.
[20] Li, Y., Weng, Yiwu, Performance study of a solid oxide fuel cell and gas turbine hybrid system designed for methane operating with non-designed fuels, J. Power Sources, Vol. 196, pp. 3824-3835, 2011.
[21] Virkar, A.V., Fung, K.Z., Singhal, S.C., The effect of pressure on solid oxide fuel cell performance, Proceedings of the Third International Symposium on Ionic and Mixed Conducting Ceramics, 1997.
[22] Ni, M., Leung, M.K.H., Leung, D.Y.C., Parametric study of solid oxide fuel cell performance, Energy Conv. Manag., Vol. 48, pp. 1525-1535, 2007.
[23] Bo, C., Yuan, C. Zhao, X., Wu, C.B., Li, M.Q., Parametric analysis of solid oxide fuel cell, Clean Techn. Environ. Policy, Vol. 11, pp. 391-399, 2009.
[24] Patcharavorachot, Y., Arpornwichanop, A., Chuachuensuk, A., Electrochemical study of a planar solid oxide fuel cell: role of support structures, J. Power Sources, Vol. 177, pp. 254-261, 2008.
[25] Recknagle, K.P., Ryan, E.M., Koeppel, B.J., Mahoney, L.A., Khaleel, M.A., Modeling of electrochemistry and steam-methane reforming performance for simulating pressurized solid oxide fuel cell stacks, J. Power Sources, Vol. 195, pp. 6637-6644, 2010.
[26] Henke, M., Kallo, J., Friedrich, K.A., Bessler, W.G., Influence of pressurization on SOFC performance and durability: a theoretical study, Fuel Cells, in press (doi:10.1002/fuce.201000098).
[27] Hashimoto, S., Nishino, H., Liu, Y., Asano, K., Mori, M., Funahashi, Y., Fujishiro, Y., Effects of Pressurization on Cell Performance of a Microtubular SOFC with Sc-Doped Zirconia Electrolyte, J. Electrochemical Society, Vol. 155 (6), pp. B587-B591, 2008
[28] Hashimoto, S., Nishino, H., Liu, Y., Asano, K., Mori, M., Funahashi, Y., Fujishiro, Y., Development of Evaluation Technologies for Microtubular SOFCs Under Pressurized Conditions
[29] Hashimoto, S., Liu, Y., Asano, K., Yoshiba, F., Mori, M., Funahashi, Y., Fujishiro, Y., Power Generation Properties of Microtubular Solid Oxide Fuel Cell Bundle Under Pressurized Condition, J. Fuel Cell Sci. Technol.,5(8) (2011) p.021010
[30] Lim, T.H., Song, R.H., Shin, D.R., Yang, J.I., Jung, H., Vinke, I.C., Yang, S.S., Operating characteristics of a 5 kW class anode-supported planar SOFC stack for a fuel cell/gas turbine hybrid system, Int. J. Hydro. Energy, Vol. 33, pp. 1076-1083, 2008.
[31] Jensen, S.H., Sun, X., Ebbesen, S.D., Knibbe, R., Mogensen, M., Hydrogen and synthetic fuel production using pressurized solid oxide electrolysis cells, Int. J. Hydro. Energy, Vol. 35, pp. 9544-9549, 2010.
[32] Kikuchi, R., Yano, T., Takeguchi, T., Eguchi, K., Characteristics of anodic polarization of solid oxide fuel cells under pressurized conditions, Solid State Ionics, Vol. 174, pp. 111-117, 2004.
[33] Huang, Q.A., Hui, R., Wang, B. and Zhang, J., A review of AC impedance modeling and validation in SOFC diagnosis, Electrochem. Acta, Vol. 52, pp. 8144-8164, 2007.
[34] Kim, C.H., Pyun, S.L. and Kim, J.H., An investigation of the capacitance dispersion on the fractal carbon electrode with edge and basal orientations, Electrochem. Acta, Vol. 48, pp. 3455-3463, 2003.
[35] Jorcin, J.B., Orazem, M.E., Pébére, N. and Tribollet, B., CPE analysis by local electrochemical impedance spectroscopy, Electrochem. Acta, Vol. 51, pp. 1473-1479, 2006.
[36] Leonide, A., Sonn, V., Weber, A. and Ivers-Tiffée, E., Evaluation and modeling of the cell resistance in anode-supported solid oxide fuel cells, J. Electrochem. Soc., Vol. 155, pp. B36-B41, 2008.
[37] Zhou, X. -D., Pederson, L. R., Templeton, J. W. and Stevenson, J. W., Electrochemical performance and stability of the cathode for solid oxide fuel cells: I. Cross validation of polarization measurements by impedance spectroscopy and current-potential sweep, J. Electrochem. Soc., Vol. 157, Issue 2, pp. B220-B227, 2010.
[38] Shy, S.S., Huang, C.M., Li, H.H., Lee, C.H., The impact of flow distributors on the performance of solid oxide fuel cell - part II: electrochemical impedance measurements, J. Power Sources, Vol. 196, pp. 7555-7563, 2011.
[39] Huang, C.M., Shy, S.S., H.H., Lee, C.H., The impact of flow distributors on the performance of solid oxide fuel cell, J. Power Sources, Vol. 195, pp. 6280-6286, 2010.
[40] Forschungszentrum Julich, FZJ, http://www.fz-juelich.de/portal
[41] Barfod, R., Mogensen, M., Klemensø, T., Hagen, A., Liu, Y.L. and Hendriksen, P.V., Detialed characterization of anode-supported SOFCs by impedance spectroscopy, J. Electrochem. Soc., Vol. 154, pp. B371-B378, 2007.
[42] Singhal, S.C., Adcances in solid oxide fuel cell technology, Solid State Ionics Vol. 135, pp. 305-313, 2000.
[43] Haanappel, V. A. C. and Smith, M. J., A review of standardising SOFC measurement and quality assurance at FZJ, J. Power Sources, Vol. 171, pp. 169-178, 2007.
指導教授 施聖洋(Shenqyang(Steven) Shy) 審核日期 2012-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明