參考文獻 |
[1] H.J. Herrmann, “Physics of granular media,” Chaos, Solitons and Fractals, Vol. 6, pp. 203-212, 1995.
[2] B.J. Ennis, J. Green, and R. Davies, “The legacy of neglect in the U.S.,” Chem. Eng. Prog., Vol. 90, pp. 32-43, 1994.
[3] S.M. Chaudeur, H. Berthiaux, and J.A. Dodds, “Experimental study of the mixing kinetics of binary pharmaceutical powder mixtures in a laboratory hoop mixer,” Chem. Eng. Sci., Vol. 57, pp. 4053-4065, 2002.
[4] R.A. Bagnold, “The physics of blown Sand and Desert Dunes,” Methuen, pp. 265, 1941.
[5] P.A. Shamlon, “Handling of Bulk Solids: Theory and Practice ,” Butterworth, pp. 193, 1998.
[6] P. Richard, “Slow relaxation and compaction of granular systems,” Nature Materials 4, pp. 121–128, 2005.
[7] C.S. Campbell, “Rapid granular flows,” Annu. Rev. Fluid Mech., Vol. 22, pp. 57-92, 1990.
[8] H.M. Jaeger, S.R. Nagel, and R.P. Behringer, “Granular solids, liquids and gases,” Rev. Mod. Phys., Vol. 68, pp. 1259-1273, 1996.
[9] J. Duran, “Sands, Powders, and Grains:An Introduction to the Physics of Granular Materials,” Springer Verlag, 2000.
[10] I. Goldhirsch, “Rapid granular flows,” Annu. Rev. Fluid Mech., Vol. 35, pp. 267-293, 2003.
[11] H.M. Jaeger, and S.R. Nagel, “Physics of the Granular State,” Science, Vol. 255, pp. 1523-1531, 1992.
[12] H. Henein, J.K. Brimacomble, and A.P. Watkinson, “Experimental study of transverse bed motion in rotary kilns,” Metall. Trans. B, Vol. 14, pp. 191-205, 1983.
[13] J. Rajchenbach, “Flow in powders: from discrete avalanches to continuous regime,” Phys. Rev. Lett., Vol. 65, pp. 2221-2224, 1990.
[14] J. Mellmann, “The transverse motion of solids in rotating cylinders-forms of motion and transition behavior,” Powder Technol., Vol 118, pp. 251-270, 2001.
[15] A.A. Boateng, and B.V. Barr, “Modeling of particle mixing and segregation in the transverse plane of a rotary kiln,” Chem. Eng. Sci., Vol. 51, pp. 4167-4181, 1996.
[16] A. Ingram, J.P.K. Seville, D.J. Parker, X. Fan, and R.G. Forster, “Axial and radial dispersion in rolling mode rotating drums,” Powder Technol., Vol. 158, pp. 76-91, 2005.
[17] A.A. Boateng, “Boundary layer modeling of granular flow in the transverse plane of a partially filled rotating cylinder,” Int. J. Multiphase flow, Vol. 24, pp. 499-521, 1998.
[18] A.V. Orpe, and D.V. Khakhar, “Scaling relations for granular flow in quasi-two-dimensional rotating cylinders,” Phys. Rev. E, Vol. 64, pp. 031302 1-13, 2001.
[19] X.Y. Liu, E. Specht, O.G. Gonzalez, and P. Walzel, “Analytical solution for the rolling-mode granular motion in rotary kilns,” Chem. Eng. Process., Volume 45, Issue 6, Pages 515-521, 2006.
[20] M.B. Donald, and B. Roseman, “Mixing and de-mixing of solid particles. Part I. Mechanisms in a horizontal drum mixer,” Br. Chem. Eng., Vol. 7, pp. 749-753, 1962.
[21] H. Henein, J.K. Brimacombe, and A.P. Watkinson, “An experimental study of segregation in rotary kilns,” Metall. Trans. B, Vol. 16, pp. 763-774, 1985.
[22] M. Alonso, M. Satoh, and K. Miyanami, “Optimum combination of size ratio, density ratio and concentration to minimize free surface segregation,” Powder Technol., Vol. 68, pp. 145-152, 1991.
[23] F. Cantelaube, and D. Bideau, “Radial segregationina 2d drum: an experimental analysis,” Europhys. Lett., Vol. 30, pp. 133-138, 1995.
[24] D.V. Khakhar, J.J. McCarthy, and J.M. Ottino, “Radial segregation of granular materials in rotating cylinders,” Phys. Fluids, Vol. 9, pp. 3600-3614, 1997.
[25] C.M. Dury, and G.
H. Ristow, “Radial segregation in two-dimensional rotating drum,” J. Phys. France I, Vol. 7, pp. 737-745, 1997.
[26] L. Prigozhin, and H. Kalman, “Radial mixing and segregation of a binary mixture in a rotating drum: model and experiment,” Phys. Rev. E, Vol. 57, pp. 2073-2080, 1998.
[27] D. Eskin, and H. Kalman, “A numerical parametric study of size segregation in a rotating drum,” Chem. Eng. Process., Vol. 39, pp. 539-545, 2000.
[28] A. Rosato, K.J. Strandburg, F. Prinz, and R.H. Swendsen, “Why the Brazil nuts are on top: size segregation of particulate matter by shaking,” Phys. Rev. Lett., Vol. 58, pp. 1038-1040, 1987.
[29] N. Nityanand, B. Manley, and H. Henein, “An analysis of radial segregation for different sized spherical solids in rotary cylinders,” Metall. Trans. B, Vol. 17, pp. 247-257, 1986.
[30] N. Thomas, “Reverse and intermediate segregation of large beads in dry granular media,” Phys. Rev. E, Vol. 62, pp. 961-974, 2000.
[31] G.H. Ristow, “Particle mass segregation in a two-dimensional rotating drum,” Europhys. Lett., Vol. 28, pp. 97-101, 1994.
[32] D.R. Van Puyvelde, B.R. Young, M.A. Wilson, and S.J. Schmidt, “Experimental determination of transverse mixing kinetics in a rolling drum by image analysis,” Powder Technol., Vol. 106, pp. 183-191, 1999.
[33] H.P. Kuo, R.C. Hsu, and Y.C. Hsiao, “Investigation of axial segregation in a rotating” Powder Technol., Vol. 153, pp. 196-203, 2005.
[34] N. Jain, J. M. Ottino, and R. M. Lueptow, “Regimes of segregation and mixing in combined size and density granular systems: an experimental study,” Granul. Matter, Vol. 7, pp. 69-81, 2005.
[35] H. A. Makse, S. Havlin, P. R. King, and H. E. Stanley, “Spontaneous stratification in granular mixtures,” Nature, Vol. 386, pp. 379-382, 1997.
[36] J. M. N. T. Gray, and K. Hutter, “Pattern formation in granular avalanches,” Continuum Mech. Thermodyn., Vol. 9, pp. 341-345, 1997.
[37] K.M. Hill, D.V. Khakhar, J.F. Gilchrist, J.J. McCarthy, and J.M. Ottino, “Segregation-driven organization in chaotic granular flows,” Proc. Natl. Acad. Sci., Vol. 96, pp. 11701-11706, 1999.
[38] K. M. Hill, G. Gioia, D. Amaravadi, and C. Winter, “Moon patterns, sun patterns, and wave breaking in rotating granular mixtures,” Complexity, Vol. 10, pp. 79-86, 2005.
[39] D.V. Khakhar, A. V. Orpe, and S.K. Hajra, “Segregation of granular materials in rotating cylinders,” Physica A, Vol. 318, pp. 192-136, 2003.
[40] D. V. Khakhar, A. V. Orpe, and J. M. Ottino, “Continuum model of mixing and size segregation in a rotating cylinder:concentration-flow coupling and streak formation,” Powder Technol., Vol. 116, pp. 232-245, 2001.
[41] K.M. Hill, G. Gioia, and D. Amaravadi, “Radial segregation patterns in rotating granular mixtures:waviness selection,” Phys. Rev. Lett., Vol. 93, 224301, 2004.
[42] I. Zuriguel, J.M.N.T. Gray, J. Peixinho, and T. Mullin, “Pattern selection by a granular wave in a rotating drum,” Phys. Rev. E, Vol. 73, 061302, 2006.
[43] S. W. Meier, D. A. M. Barreiro, J. M. Ottino, and R. M. Lueptow, “Coarsening of granular segregation patterns in quasi-two-dimensional tumblers,” Nature Physics, Vol. 4, pp. 244-248, 2008.
[44] I. Zuriguel, J. Peixinho, and T. Mullin, “Segregation pattern competition in a thin rotating drum,” Phys. Rev. E, Vol. 79, 051303, 2009.
[45] G.G. Pereira, S. Pucilowski, K. Liffman, and P.W. Cleary, “Streak patterns in binary granular media in a rotating drum,” Appl. Math. Model., Vol. 35, pp. 1638-1646, 2011.
[46] H.L. Gao, Y.Z. Zhao, G.S. Liu, Y.C. Chen, and J.Y. Zheng, “Effect of damping on segregation of size-type binary granular systems in a rotating horizontal drum” Acta Phys. Sin., Vol. 60, 074501, 2011.
[47] S. Ogawa, “Multi-temperature theory of granular materials” Proc. U. S.-Japan Symp. on Continuum Mechanics and Statistical Approaches in the Mechanics of Granular Materials., pp. 208-217, 1978.
[48] K.M. Hill, D.V. Khakhar, J.F. Gilchrist, J.J. McCarthy, and J.M. Ottino, “Segregation-driven organization in chaotic granular flows” Proc. Natl. Acad. Sci. U. S. A., Vol. 96, pp. 11701-11706, 1999.
|