參考文獻 |
[1] J. Riesle, A.P. Hollander, R. Langer, L.E. Freed, G. Vunjak-Novakovic, Collagen in tissue-engineered cartilage: types, structure, and crosslinks, J Cell Biochem 71 (1998) 313-327.
[2] J.W. Ewing, Articular Cartilage and Knee Joint Function: Basic Science and Arthroscopy/Bristol-Myers/Zimmer Orthopaedic, (1990).
[3] H.J. Mankin, The response of articular cartilage to mechanical injury, J Bone Joint Surg Am 64 (1982) 460-466.
[4] D.L. Wise, Biomaterials and Bioengineering handbook:Marcel Dekrer, (2000).
[5] R.P. Lanza, Principles of tissue engineering, Tokyo,samDiego (2000).
[6] 楊明珠, 修護膝蓋軟骨 日擬准再生醫療, 中央社新聞網, 中央通訊社, 台灣, 2012.
[7] P.G. Robey, Stem cells near the century mark, J Clin Invest 105 (2000) 1489-1491.
[8] Holtzer H, "Cell lineages, stem cells and the ’’quantal’’ cell cycle concept" Stem cells and tissue homeostasis, (1978) p1-28.
[9] L. Jackson, D.R. Jones, P. Scotting, V. Sottile, Adult mesenchymal stem cells: differentiation potential and therapeutic applications, J Postgrad Med 53 (2007) 121-127.
[10] G.C. Kopen, D.J. Prockop, D.G. Phinney, Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains, Proc Natl Acad Sci U S A 96 (1999) 10711-10716.
[11] Q. Shi, S. Rafii, M.H. Wu, E.S. Wijelath, C. Yu, A. Ishida, Y. Fujita, S. Kothari, R. Mohle, L.R. Sauvage, M.A. Moore, R.F. Storb, W.P. Hammond, Evidence for circulating bone marrow-derived endothelial cells, Blood 92 (1998) 362-367.
[12] M. Tohill, C. Mantovani, M. Wiberg, G. Terenghi, Rat bone marrow mesenchymal stem cells express glial markers and stimulate nerve regeneration, Neurosci Lett 362 (2004) 200-203.
[13] M. Takeda, M. Yamamoto, K. Isoda, S. Higashiyama, M. Hirose, H. Ohgushi, M. Kawase, K. Yagi, Availability of bone marrow stromal cells in three-dimensional coculture with hepatocytes and transplantation into liver-damaged mice, J Biosci Bioeng 100 (2005) 77-81.
[14] H. Ohgushi, V.M. Goldberg, A.I. Caplan, Repair of bone defects with marrow cells and porous ceramic. Experiments in rats, Acta Orthop Scand 60 (1989) 334-339.
[15] C.J. Xian, B.K. Foster, Repair of injured articular and growth plate cartilage using mesenchymal stem cells and chondrogenic gene therapy, Curr Stem Cell Res Ther 1 (2006) 213-229.
[16] E. Hesse, G. Kluge, A. Atfi, D. Correa, C. Haasper, G. Berding, H.O. Shin, J. Viering, F. Langer, P.M. Vogt, C. Krettek, M. Jagodzinski, Repair of a segmental long bone defect in human by implantation of a novel multiple disc graft, Bone 46 (2010) 1457-1463.
[17] H. Ohgushi, N. Kotobuki, H. Funaoka, H. Machida, M. Hirose, Y. Tanaka, Y. Takakura, Tissue engineered ceramic artificial joint--ex vivo osteogenic differentiation of patient mesenchymal cells on total ankle joints for treatment of osteoarthritis, Biomaterials 26 (2005) 4654-4661.
[18] S. Wakitani, M. Nawata, K. Tensho, T. Okabe, H. Machida, H. Ohgushi, Repair of articular cartilage defects in the patello-femoral joint with autologous bone marrow mesenchymal cell transplantation: three case reports involving nine defects in five knees, J Tissue Eng Regen Med 1 (2007) 74-79.
[19] S. Wakitani, T. Okabe, S. Horibe, T. Mitsuoka, M. Saito, T. Koyama, M. Nawata, K. Tensho, H. Kato, K. Uematsu, R. Kuroda, M. Kurosaka, S. Yoshiya, K. Hattori, H. Ohgushi, Safety of autologous bone marrow-derived mesenchymal stem cell transplantation for cartilage repair in 41 patients with 45 joints followed for up to 11 years and 5 months, J Tissue Eng Regen Med 5 (2011) 146-150.
[20] A. Arthur, A. Zannettino, S. Gronthos, The therapeutic applications of multipotential mesenchymal/stromal stem cells in skeletal tissue repair, J Cell Physiol 218 (2009) 237-245.
[21] D. Bosnakovski, M. Mizuno, G. Kim, T. Ishiguro, M. Okumura, T. Iwanaga, T. Kadosawa, T. Fujinaga, Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells in pellet cultural system, Exp Hematol 32 (2004) 502-509.
[22] D. Bosnakovski, M. Mizuno, G. Kim, S. Takagi, M. Okumur, T. Fujinag, Gene expression profile of bovine bone marrow mesenchymal stem cell during spontaneous chondrogenic differentiation in pellet culture system, Jpn J Vet Res 53 (2006) 127-139.
[23] P.D. Brown, P.D. Benya, Alterations in chondrocyte cytoskeletal architecture during phenotypic modulation by retinoic acid and dihydrocytochalasin B-induced reexpression, J Cell Biol 106 (1988) 171-179.
[24] V. Klaus von der Mark, et al., Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture, Nature Vol 267 (1977).
[25] G. Kohei Tsuchiya, et al., The effect of coculture of chondrocytes with mesenchymal stem cells on their cartilaginous phenotype in vitro, Materials Science and Engineering:C Vol 24 (2004) 391-396.
[26] S. Jie Jiang, et al., Biochemical and Biophysical Research Communications Vol 338 (2005) 762-770.
[27] L. Bian, D.Y. Zhai, E.C. Zhang, R.L. Mauck, J.A. Burdick, Dynamic compressive loading enhances cartilage matrix synthesis and distribution and suppresses hypertrophy in hMSC-laden hyaluronic acid hydrogels, Tissue Eng Part A 18 (2012) 715-724.
[28] L. Zheng, H.S. Fan, J. Sun, X.N. Chen, G. Wang, L. Zhang, Y.J. Fan, X.D. Zhang, Chondrogenic differentiation of mesenchymal stem cells induced by collagen-based hydrogel: an in vivo study, J Biomed Mater Res A 93 (2010) 783-792.
[29] C. Gaudet, W.A. Marganski, S. Kim, C.T. Brown, V. Gunderia, M. Dembo, J.Y. Wong, Influence of type I collagen surface density on fibroblast spreading, motility, and contractility, Biophys J 85 (2003) 3329-3335.
[30] S. Loty, C. Foll, N. Forest, J.M. Sautier, Association of enhanced expression of gap junctions with in vitro chondrogenic differentiation of rat nasal septal cartilage-released cells following their dedifferentiation and redifferentiation, Arch Oral Biol 45 (2000) 843-856.
[31] N. Serakinci, P. Guldberg, J.S. Burns, B. Abdallah, H. Schrodder, T. Jensen, M. Kassem, Adult human mesenchymal stem cell as a target for neoplastic transformation, Oncogene 23 (2004) 5095-5098.
[32] J.E. Trosko, C.C. Chang, B.L. Upham, M.H. Tai, Ignored hallmarks of carcinogenesis: stem cells and cell-cell communication, Ann N Y Acad Sci 1028 (2004) 192-201.
[33] L.J. Ng, S. Wheatley, G.E. Muscat, J. Conway-Campbell, J. Bowles, E. Wright, D.M. Bell, P.P. Tam, K.S. Cheah, P. Koopman, SOX9 binds DNA, activates transcription, and coexpresses with type II collagen during chondrogenesis in the mouse, Dev Biol 183 (1997) 108-121.
[34] I. Sekiya, K. Tsuji, P. Koopman, H. Watanabe, Y. Yamada, K. Shinomiya, A. Nifuji, M. Noda, SOX9 enhances aggrecan gene promoter/enhancer activity and is up-regulated by retinoic acid in a cartilage-derived cell line, TC6, J Biol Chem 275 (2000) 10738-10744.
[35] F. Barry, R.E. Boynton, B. Liu, J.M. Murphy, Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components, Exp Cell Res 268 (2001) 189-200.
[36] J.A. Ramshaw, N.K. Shah, B. Brodsky, Gly-X-Y tripeptide frequencies in collagen: a context for host-guest triple-helical peptides, J Struct Biol 122 (1998) 86-91.
[37] A.V. Taubenberger, M.A. Woodruff, H. Bai, D.J. Muller, D.W. Hutmacher, The effect of unlocking RGD-motifs in collagen I on pre-osteoblast adhesion and differentiation, Biomaterials 31 (2010) 2827-2835.
[38] S. Vandersteenhoven JJ, Histological investigation of bone induction by demineralized allogeneic bone-matrix-a natural biomaterial for osseous reconstruction, Biomedical Materials Research Vol 17 (1983) 1003-1014.
[39] Y.N. Wu, Z. Yang, J.H. Hui, H.W. Ouyang, E.H. Lee, Cartilaginous ECM component-modification of the micro-bead culture system for chondrogenic differentiation of mesenchymal stem cells, Biomaterials 28 (2007) 4056-4067.
[40] T. Mori, M. Okumura, M. Matsuura, K. Ueno, S. Tokura, Y. Okamoto, S. Minami, T. Fujinaga, Effects of chitin and its derivatives on the proliferation and cytokine production of fibroblasts in vitro, Biomaterials 18 (1997) 947-951.
[41] P.R. Klokkevold, L. Vandemark, E.B. Kenney, G.W. Bernard, Osteogenesis enhanced by chitosan (poly-N-acetyl glucosaminoglycan) in vitro, J Periodontol 67 (1996) 1170-1175.
[42] G.R. Ragetly, D.J. Griffon, H.B. Lee, L.P. Fredericks, W. Gordon-Evans, Y.S. Chung, Effect of chitosan scaffold microstructure on mesenchymal stem cell chondrogenesis, Acta Biomater 6 (2010) 1430-1436.
[43] Z. Ma, C. Gao, Y. Gong, J. Ji, J. Shen, Immobilization of natural macromolecules on poly-L-lactic acid membrane surface in order to improve its cytocompatibility, J Biomed Mater Res 63 (2002) 838-847.
[44] Z. MA, et al., Surface Modification of Poly- L-Lactide by Photografting of Hydrophilic Polymers towards Improving Its Hydrophilicity, Eur. J. Cell Biol Vol 56 (2002) 364-373.
[45] F. Redini, P. Galera, A. Mauviel, G. Loyau, J.P. Pujol, Transforming growth factor beta stimulates collagen and glycosaminoglycan biosynthesis in cultured rabbit articular chondrocytes, FEBS Lett 234 (1988) 172-176.
[46] Y. Kato, M. Iwamoto, T. Koike, F. Suzuki, Y. Takano, Terminal differentiation and calcification in rabbit chondrocyte cultures grown in centrifuge tubes: regulation by transforming growth factor beta and serum factors, Proc Natl Acad Sci U S A 85 (1988) 9552-9556.
[47] M.B. Sporn, A.B. Roberts, L.M. Wakefield, R.K. Assoian, Transforming growth factor-beta: biological function and chemical structure, Science 233 (1986) 532-534.
[48] T. Tommo TsvkAzAk I, Effect of TGF-β on insuline -like growth factor-I autocrine/paracrine axis in cultured rat articular chondrocytes, 215 (1994).
[49] Y. Ko, H. Stiebler, G. Nickenig, A.J. Wieczorek, H. Vetter, A. Sachinidis, Synergistic action of angiotensin II, insulin-like growth factor-I, and transforming growth factor-beta on platelet-derived growth factor-BB, basic fibroblastic growth factor, and epidermal growth factor-induced DNA synthesis in vascular smooth muscle cells, Am J Hypertens 6 (1993) 496-499.
[50] L. Uebersax, H.P. Merkle, L. Meinel, Insulin-like growth factor I releasing silk fibroin scaffolds induce chondrogenic differentiation of human mesenchymal stem cells, J Control Release 127 (2008) 12-21.
|