博碩士論文 993204004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:18.118.193.28
姓名 林聖倫(Sheng-lun Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以表面貼附程度和細胞間的作用來控制骨髓間葉幹細胞往軟骨分化之影響
(The Effect of Surface Adhesivity and Cell-Cell Contact on chondrogenesis of Mesenchymal Stem Cells)
相關論文
★ 老鼠免疫球蛋白IgG2a之位向性固定法—Fc區域的親和性配體設計★ 量子點表面改質與動物細胞標定
★ 以螢光光譜觀測蛋白質吸附於疏水表面後之構型變化與吸附位向★ 利用雙功能吸附基材進行蛋白復性-蛋白吸附狀態對復性的影響
★ 界面聚合之奈米過濾膜的抗氯性研究★ 以螢光光譜探討Indolicidin及其類似物與微脂粒之交互作用
★ 負電性奈米過濾膜之排鹽特性★ 金奈米粒子親水化及與DNA一對一鍵結之探討
★ 以雙重電性表面改質方式製作抗生物吸附之超過濾與奈米過濾膜★ 以表面修飾之材料控制間葉幹細胞貼附及對其往軟骨分化之影響
★ 金奈米粒子與DNA一對一鍵結及其在檢測單一核苷酸變異的應用★ 以三聚氰氯為單體的抗氯型奈米過濾膜
★ 鹼性胜肽抗生素indolicidin及其類似物之溶血作用機制探討★ 蛋白質特定方向固定化-以α-amylase為例
★ Indolicidin及其類似物與微脂粒交互作用之熱力學研究★ 位向性固定化葡萄糖氧化酶之新方法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 水膠(Hydrogel)有很高的含水量和相對低的細胞貼附率。有許多研究指出水膠可提供微觀環境來做軟骨分化,特別的是有些還會將水膠混摻透明質酸和膠原蛋白。在我們的研究中,我們試著去調控表面貼附力和細胞間的接觸作用來誘導骨髓間葉幹細胞(RM1)往軟骨分化。
幾丁聚醣(Chitosan, CS)被選來適合細胞貼附的基底材料,另外我們使用表面改質,將兩端帶有Carboxylate的PEG(CP)接枝到CS表面上,以達到細胞貼附的改變。而在三維培養中,先製備好在不同孔徑大小的尼龍(Nylon mesh membrane)披覆上CS或是CP接枝上CS表面,來營造出一個三維的環境,利用此環境來控制細胞間的接觸作用,尼龍的孔徑大小我們選用30μm,100μm和180μm。在180μm的尼龍擁有較低的表面對體積的比率。在100μm和180μm中,我們觀察到細胞會逐漸聚集。在披覆CS的尼龍培養在Basal medium中,藉由GAGs染色和基因表現的分析指出有軟骨分化的趨勢。並且發現在180μm中對於間葉幹細胞的軟骨分化最好,也告知我們細胞間接觸作用的重要性。有趣的是,在披覆CS的尼龍培養在Chondrogenic medium中,並未大幅度地提升軟骨分化。
在CP的尼龍中,細胞在第六個小時就開始出現聚集的現象,而且Aggrecan和Col2a1有更高的表現量,若再添加Chondrogenic medium來培養,發現又更能促進RM1分化成軟骨細胞,GAGs染色和基因表現量都是最好的。
從這些結果指出當我們稍微的降低表面貼附率就可以增加細胞間的接觸作用,而且推論出促進軟骨分化的重要因素就是要提升細胞間的接觸作用。
摘要(英) Hydrogels display high water retention and relatively low cell adhesivity. Several studies have demonstrated that hydrogels can provide an instructive microenvironment for the chondrogenesis of mesenchymal stem cells (MSC), especially when hyaluronan and collagen II were incorporated. In this study we try to elucidate that it is surface adhesivity, cell-cell contact, or bio-specific matrix-cell interaction dominates instructive differentiation.
Chitosan was selected as the base substrate for cell attachment. Cell adhesion was altered through surface modification of chitosan by carboxylate ended polyethylene glycol (CP). Nylon meshes of different mesh sizes coated with chitosan or CP modified chitosan were prepared to provide 3-D environments for cell-cell contact control. The size of Nylon mesh selected are 30, 100, 180μm. The 180μm mesh owns the lowest surface to volume ratio. We have observed that the cell would gradually aggregate in the wells of 100 and 180μm. Nylon mesh coated with chitosan even in basal medium. GAG staining as well as SOX9, Aggrecan, and Col2a1 gene expression indicate chondrogenesis. Results indicate that the 180μm mesh is the best for MSC chondrogenesis suggesting the importance of cell-cell contact. Interestingly, chondrogenic medium does not promote chondrogenesis when MSCs are cultivated in chitosan coated meshes.
In Nylon mesh coated with CP modified chitosan, we observe that cells aggregate within 6 hours in the wells of 100 and 180μm mesh. Much higher SOX9, Aggrecan, and Col2a1 expression are observed when MSCs are cultivated in Nylon mesh coated with CP modified than with virgin chitosan.
From these results, we find that slightly reduction of surface adhesivity enhances cell-cell contact. And the enhancement of cell-cell contact is critical to chondrogenesis.
關鍵字(中) ★ 聚乙醇
★ 骨髓間葉幹細胞
★ 軟骨分化
★ 幾丁聚醣
關鍵字(英) ★ MSCs
★ chondrogenesis
★ chitosan
★ PEG
論文目次 摘要 I
Abstract III
誌謝 IV
目錄 V
圖目錄 IX
表目錄 XIII
第一章 緒論 1
1-1 研究動機 1
1-2 研究目的 2
第二章 文獻回顧 3
2-1 軟骨 3
2-1-1 關節軟骨 4
2-1-2 組織工程應用於關節軟骨修復 7
2-2 幹細胞 9
2-2-1 間葉幹細胞 10
2-2-2 間葉幹細胞在組織修復上的應用 11
2-3 軟骨分化的特性 12
2-3-1 軟骨分化的生理機能 12
2-3-2 細胞與細胞之間與細胞與基材的作用 13
2-3-3 軟骨分化的基因表現 15
2-4 誘導幹細胞分化成軟骨細胞之體外方法 16
2-4-1 天然高分子材料 16
2-4-2 影響軟骨化的表面改質 18
2-4-3 生長因子對於軟骨影響 20
第三章 實驗藥品、儀器與方法 22
3-1 實驗藥品 22
3-1-1 表面改質 22
3-1-2 細胞培養 22
3-1-3 固定細胞及染色 23
3-1-4 基因表現分析 23
3-2 實驗儀器 23
3-3 溶液配製 24
3-4 實驗方法 26
3-4-1 實驗架構 26
3-4-2 表面改質 27
3-4-2-1 幾丁聚醣薄膜的製備 27
3-4-2-2 羧基-聚乙二醇-羧基的接枝 29
3-4-3 細胞培養 29
3-4-3-1 繼代培養 29
3-4-3-2 凍存細胞 30
3-4-3-3 解凍細胞 31
3-4-4 細胞分化 31
3-4-4-1 二維培養 31
3-4-4-2 三維培養 32
3-4-5 Safranin O 染色 32
3-4-6 基因表現分析 33
3-4-6-1 萃取RNA 33
3-4-6-2 反轉錄(Reverse transcription) 33
3-4-6-3 定量聚合酶鏈鎖反應(Q-PCR) 35
第四章 結果與討論 37
4-1 二維培養 37
4-1-1 細胞型態 37
4-1-2 Safranin O 染色 47
4-1-3 基因表現分析 49
4-2 三維培養 52
4-2-1 細胞型態 52
4-2-2 Trypan blue 染色 61
4-2-3 Safranin O 染色 62
4-2-4 基因表現分析 66
第五章 結論 71
第六章 參考文獻 72
參考文獻 [1] J. Riesle, A.P. Hollander, R. Langer, L.E. Freed, G. Vunjak-Novakovic, Collagen in tissue-engineered cartilage: types, structure, and crosslinks, J Cell Biochem 71 (1998) 313-327.
[2] J.W. Ewing, Articular Cartilage and Knee Joint Function: Basic Science and Arthroscopy/Bristol-Myers/Zimmer Orthopaedic, (1990).
[3] H.J. Mankin, The response of articular cartilage to mechanical injury, J Bone Joint Surg Am 64 (1982) 460-466.
[4] D.L. Wise, Biomaterials and Bioengineering handbook:Marcel Dekrer, (2000).
[5] R.P. Lanza, Principles of tissue engineering, Tokyo,samDiego (2000).
[6] 楊明珠, 修護膝蓋軟骨 日擬准再生醫療, 中央社新聞網, 中央通訊社, 台灣, 2012.
[7] P.G. Robey, Stem cells near the century mark, J Clin Invest 105 (2000) 1489-1491.
[8] Holtzer H, "Cell lineages, stem cells and the ’’quantal’’ cell cycle concept" Stem cells and tissue homeostasis, (1978) p1-28.
[9] L. Jackson, D.R. Jones, P. Scotting, V. Sottile, Adult mesenchymal stem cells: differentiation potential and therapeutic applications, J Postgrad Med 53 (2007) 121-127.
[10] G.C. Kopen, D.J. Prockop, D.G. Phinney, Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains, Proc Natl Acad Sci U S A 96 (1999) 10711-10716.
[11] Q. Shi, S. Rafii, M.H. Wu, E.S. Wijelath, C. Yu, A. Ishida, Y. Fujita, S. Kothari, R. Mohle, L.R. Sauvage, M.A. Moore, R.F. Storb, W.P. Hammond, Evidence for circulating bone marrow-derived endothelial cells, Blood 92 (1998) 362-367.
[12] M. Tohill, C. Mantovani, M. Wiberg, G. Terenghi, Rat bone marrow mesenchymal stem cells express glial markers and stimulate nerve regeneration, Neurosci Lett 362 (2004) 200-203.
[13] M. Takeda, M. Yamamoto, K. Isoda, S. Higashiyama, M. Hirose, H. Ohgushi, M. Kawase, K. Yagi, Availability of bone marrow stromal cells in three-dimensional coculture with hepatocytes and transplantation into liver-damaged mice, J Biosci Bioeng 100 (2005) 77-81.
[14] H. Ohgushi, V.M. Goldberg, A.I. Caplan, Repair of bone defects with marrow cells and porous ceramic. Experiments in rats, Acta Orthop Scand 60 (1989) 334-339.
[15] C.J. Xian, B.K. Foster, Repair of injured articular and growth plate cartilage using mesenchymal stem cells and chondrogenic gene therapy, Curr Stem Cell Res Ther 1 (2006) 213-229.
[16] E. Hesse, G. Kluge, A. Atfi, D. Correa, C. Haasper, G. Berding, H.O. Shin, J. Viering, F. Langer, P.M. Vogt, C. Krettek, M. Jagodzinski, Repair of a segmental long bone defect in human by implantation of a novel multiple disc graft, Bone 46 (2010) 1457-1463.
[17] H. Ohgushi, N. Kotobuki, H. Funaoka, H. Machida, M. Hirose, Y. Tanaka, Y. Takakura, Tissue engineered ceramic artificial joint--ex vivo osteogenic differentiation of patient mesenchymal cells on total ankle joints for treatment of osteoarthritis, Biomaterials 26 (2005) 4654-4661.
[18] S. Wakitani, M. Nawata, K. Tensho, T. Okabe, H. Machida, H. Ohgushi, Repair of articular cartilage defects in the patello-femoral joint with autologous bone marrow mesenchymal cell transplantation: three case reports involving nine defects in five knees, J Tissue Eng Regen Med 1 (2007) 74-79.
[19] S. Wakitani, T. Okabe, S. Horibe, T. Mitsuoka, M. Saito, T. Koyama, M. Nawata, K. Tensho, H. Kato, K. Uematsu, R. Kuroda, M. Kurosaka, S. Yoshiya, K. Hattori, H. Ohgushi, Safety of autologous bone marrow-derived mesenchymal stem cell transplantation for cartilage repair in 41 patients with 45 joints followed for up to 11 years and 5 months, J Tissue Eng Regen Med 5 (2011) 146-150.
[20] A. Arthur, A. Zannettino, S. Gronthos, The therapeutic applications of multipotential mesenchymal/stromal stem cells in skeletal tissue repair, J Cell Physiol 218 (2009) 237-245.
[21] D. Bosnakovski, M. Mizuno, G. Kim, T. Ishiguro, M. Okumura, T. Iwanaga, T. Kadosawa, T. Fujinaga, Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells in pellet cultural system, Exp Hematol 32 (2004) 502-509.
[22] D. Bosnakovski, M. Mizuno, G. Kim, S. Takagi, M. Okumur, T. Fujinag, Gene expression profile of bovine bone marrow mesenchymal stem cell during spontaneous chondrogenic differentiation in pellet culture system, Jpn J Vet Res 53 (2006) 127-139.
[23] P.D. Brown, P.D. Benya, Alterations in chondrocyte cytoskeletal architecture during phenotypic modulation by retinoic acid and dihydrocytochalasin B-induced reexpression, J Cell Biol 106 (1988) 171-179.
[24] V. Klaus von der Mark, et al., Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture, Nature Vol 267 (1977).
[25] G. Kohei Tsuchiya, et al., The effect of coculture of chondrocytes with mesenchymal stem cells on their cartilaginous phenotype in vitro, Materials Science and Engineering:C Vol 24 (2004) 391-396.
[26] S. Jie Jiang, et al., Biochemical and Biophysical Research Communications Vol 338 (2005) 762-770.
[27] L. Bian, D.Y. Zhai, E.C. Zhang, R.L. Mauck, J.A. Burdick, Dynamic compressive loading enhances cartilage matrix synthesis and distribution and suppresses hypertrophy in hMSC-laden hyaluronic acid hydrogels, Tissue Eng Part A 18 (2012) 715-724.
[28] L. Zheng, H.S. Fan, J. Sun, X.N. Chen, G. Wang, L. Zhang, Y.J. Fan, X.D. Zhang, Chondrogenic differentiation of mesenchymal stem cells induced by collagen-based hydrogel: an in vivo study, J Biomed Mater Res A 93 (2010) 783-792.
[29] C. Gaudet, W.A. Marganski, S. Kim, C.T. Brown, V. Gunderia, M. Dembo, J.Y. Wong, Influence of type I collagen surface density on fibroblast spreading, motility, and contractility, Biophys J 85 (2003) 3329-3335.
[30] S. Loty, C. Foll, N. Forest, J.M. Sautier, Association of enhanced expression of gap junctions with in vitro chondrogenic differentiation of rat nasal septal cartilage-released cells following their dedifferentiation and redifferentiation, Arch Oral Biol 45 (2000) 843-856.
[31] N. Serakinci, P. Guldberg, J.S. Burns, B. Abdallah, H. Schrodder, T. Jensen, M. Kassem, Adult human mesenchymal stem cell as a target for neoplastic transformation, Oncogene 23 (2004) 5095-5098.
[32] J.E. Trosko, C.C. Chang, B.L. Upham, M.H. Tai, Ignored hallmarks of carcinogenesis: stem cells and cell-cell communication, Ann N Y Acad Sci 1028 (2004) 192-201.
[33] L.J. Ng, S. Wheatley, G.E. Muscat, J. Conway-Campbell, J. Bowles, E. Wright, D.M. Bell, P.P. Tam, K.S. Cheah, P. Koopman, SOX9 binds DNA, activates transcription, and coexpresses with type II collagen during chondrogenesis in the mouse, Dev Biol 183 (1997) 108-121.
[34] I. Sekiya, K. Tsuji, P. Koopman, H. Watanabe, Y. Yamada, K. Shinomiya, A. Nifuji, M. Noda, SOX9 enhances aggrecan gene promoter/enhancer activity and is up-regulated by retinoic acid in a cartilage-derived cell line, TC6, J Biol Chem 275 (2000) 10738-10744.
[35] F. Barry, R.E. Boynton, B. Liu, J.M. Murphy, Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components, Exp Cell Res 268 (2001) 189-200.
[36] J.A. Ramshaw, N.K. Shah, B. Brodsky, Gly-X-Y tripeptide frequencies in collagen: a context for host-guest triple-helical peptides, J Struct Biol 122 (1998) 86-91.
[37] A.V. Taubenberger, M.A. Woodruff, H. Bai, D.J. Muller, D.W. Hutmacher, The effect of unlocking RGD-motifs in collagen I on pre-osteoblast adhesion and differentiation, Biomaterials 31 (2010) 2827-2835.
[38] S. Vandersteenhoven JJ, Histological investigation of bone induction by demineralized allogeneic bone-matrix-a natural biomaterial for osseous reconstruction, Biomedical Materials Research Vol 17 (1983) 1003-1014.
[39] Y.N. Wu, Z. Yang, J.H. Hui, H.W. Ouyang, E.H. Lee, Cartilaginous ECM component-modification of the micro-bead culture system for chondrogenic differentiation of mesenchymal stem cells, Biomaterials 28 (2007) 4056-4067.
[40] T. Mori, M. Okumura, M. Matsuura, K. Ueno, S. Tokura, Y. Okamoto, S. Minami, T. Fujinaga, Effects of chitin and its derivatives on the proliferation and cytokine production of fibroblasts in vitro, Biomaterials 18 (1997) 947-951.
[41] P.R. Klokkevold, L. Vandemark, E.B. Kenney, G.W. Bernard, Osteogenesis enhanced by chitosan (poly-N-acetyl glucosaminoglycan) in vitro, J Periodontol 67 (1996) 1170-1175.
[42] G.R. Ragetly, D.J. Griffon, H.B. Lee, L.P. Fredericks, W. Gordon-Evans, Y.S. Chung, Effect of chitosan scaffold microstructure on mesenchymal stem cell chondrogenesis, Acta Biomater 6 (2010) 1430-1436.
[43] Z. Ma, C. Gao, Y. Gong, J. Ji, J. Shen, Immobilization of natural macromolecules on poly-L-lactic acid membrane surface in order to improve its cytocompatibility, J Biomed Mater Res 63 (2002) 838-847.
[44] Z. MA, et al., Surface Modification of Poly- L-Lactide by Photografting of Hydrophilic Polymers towards Improving Its Hydrophilicity, Eur. J. Cell Biol Vol 56 (2002) 364-373.
[45] F. Redini, P. Galera, A. Mauviel, G. Loyau, J.P. Pujol, Transforming growth factor beta stimulates collagen and glycosaminoglycan biosynthesis in cultured rabbit articular chondrocytes, FEBS Lett 234 (1988) 172-176.
[46] Y. Kato, M. Iwamoto, T. Koike, F. Suzuki, Y. Takano, Terminal differentiation and calcification in rabbit chondrocyte cultures grown in centrifuge tubes: regulation by transforming growth factor beta and serum factors, Proc Natl Acad Sci U S A 85 (1988) 9552-9556.
[47] M.B. Sporn, A.B. Roberts, L.M. Wakefield, R.K. Assoian, Transforming growth factor-beta: biological function and chemical structure, Science 233 (1986) 532-534.
[48] T. Tommo TsvkAzAk I, Effect of TGF-β on insuline -like growth factor-I autocrine/paracrine axis in cultured rat articular chondrocytes, 215 (1994).
[49] Y. Ko, H. Stiebler, G. Nickenig, A.J. Wieczorek, H. Vetter, A. Sachinidis, Synergistic action of angiotensin II, insulin-like growth factor-I, and transforming growth factor-beta on platelet-derived growth factor-BB, basic fibroblastic growth factor, and epidermal growth factor-induced DNA synthesis in vascular smooth muscle cells, Am J Hypertens 6 (1993) 496-499.
[50] L. Uebersax, H.P. Merkle, L. Meinel, Insulin-like growth factor I releasing silk fibroin scaffolds induce chondrogenic differentiation of human mesenchymal stem cells, J Control Release 127 (2008) 12-21.
指導教授 阮若屈(Ruoh-Chyu Ruaan) 審核日期 2012-8-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明