博碩士論文 993204011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.12.76.168
姓名 鄒立為(Li-wei Chou)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 奈米結構透明導電氧化材料之應用
(Applications of Nanostructural Transparent Conductive Oxides)
相關論文
★ 錫碲擴散偶之擴散阻障層界面反應★ 熱電材料與擴散阻障層在電流影響下的界面反應研究
★ 無鉛銲料與無電鍍鈷基板於多次迴焊之界面反應與可靠度測試★ 無電鍍鎳磷層應用於熱電材料與無鉛銲料之界面研究
★ 高可靠度車用印刷電路板之表面處理層開發★ 共濺鍍銅鈦薄膜之相分離演化機制與其對機械性質於3DIC接合的影響
★ 添加微量錫銀銅合金之銅薄膜與銅基板之接合研究★ 新式低溫合金焊料之開發與界面反應探討及可靠度分析
★ 電遷移對純錫導線晶粒旋轉之研究★ 以同步輻射臨場量測電遷移對純錫導線應力分佈之研究
★ 鋁鍺薄膜封裝研究★ 無鉛銲料錫銀鉍銦與銅電極之電遷移研究
★ 以表面處理及塗佈奈米粒子抑制錫晶鬚生長★ 鋁鍺雙層薄膜之擴散行為與金屬誘發結晶現象研究
★ 鋁(銅)與鎳混合導線於矽通孔製程之電遷移現象研究★ 無鉛銲料與碲化鉍基材之界面反應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以奈米結構透明導電氧化材料為主軸,探討奈米尺度的材料特性,比較結構化之電性及光性表現,並討論應用於透明導電元件之可行性。
本研究分別探討表面織構化薄膜及水熱法摻雜銀奈米柱之優化條件。第一部份是利用噴槍噴霧法製備高表面織構化二氧化錫薄膜,利用微型噴霧器將二氧化錫奈米顆粒均勻噴灑於玻璃基板上,再以常壓化學氣相沉積法(APCVD)將二氧化錫薄膜鍍製於基板上,此方法可以簡單製程和低成本的方式大量製備。隨著噴灑的奈米顆粒濃度增加,薄膜表面的粗糙度也會大幅增加,但所增加的表面會造成穿透度的損失,故本實驗最佳化條件在平均穿透度80.6 %時,可達到35.0 %的霧度(haze)。二氧化錫薄膜沉積於奈米顆粒的生長機制也於文中討論,二氧化錫薄膜對於結晶奈米顆粒的同質成長和非晶玻璃基板的異質成長,是造成表面生成球狀起伏的最大原因,以此方法製備的表面織構化二氧化錫薄膜將可應用於薄膜太陽電池。
第二部分是研究水熱法氧化鋅奈米柱於不同pH值環境下的生長機制,利用表面形貌估算奈米柱之表面能,再以經驗式得出表面形貌與pH值的關係式。透過螢光光譜儀可以得出奈米柱的缺陷密度,文中也探討缺陷密度與水熱法環境的關係,當中發現在pH=8.94時,會出現形貌及缺陷密度大幅改變的轉換點(transition point),以此轉換點可將奈米柱之形貌歸類成兩種:當pH小於此點時,奈米柱會傾向成長a軸方向,形成直徑較寬的六角柱體;當pH大於此點時,奈米柱會沿著[0001]方向快速沉積,形成長度較長的圓柱體。在摻雜銀原子的水熱法研究中,我們發現此轉換點環境最有利於銀原子的摻雜,此原因與鋅離子於溶液中的最大溶解度有關。在熱蒸鍍銀電極與氧化鋅奈米柱形成蕭特基接面(Schottky contact)的研究中,摻雜銀之氧化鋅奈米柱能有效增加整流比例,其最佳化條件為10%的摻雜銀之氧化鋅奈米柱,可達到10的4次方的整流比,此結果顯示出水熱法製備摻雜銀之氧化鋅奈米柱可應用於整流元件。 
摘要(英) Highly-textured surface SnO2 transparent conductive oxide thin films were directly deposited using the atmospheric pressure chemical vapor deposition technique on nanoparticle-coated glass substrates. A simple nozzle-spraying process was developed for the SnO2 nanoparticle coating of highly-textured SnO2 thin films. The nozzle-spraying process caused the surface morphology of the SnO2 films to change from a pyramidal shape to a flower-like double texture. Optimum nanoparticle-coated SnO2 thin films had a haze value of 35.0±4.0 % and an average visible optical transmittance of 80.6±2.2 % in the wavelength range of 400 to 900 nm. The morphological evolution of the SnO2 thin films was apparent on the hetero-surface of the amorphous glass and multicrystalline SnO2 nanoparticles. These results indicate that the crystalline SnO2 nanoparticle has an important role in the fabrication of a flower-like double texture, and that the texture of these SnO2 thin films offer a promising transparent conductive material for thin film solar cells.
ZnO nanorods were fabricated by a hydrothermal process at various pH values. The growth mechanisms for these nanorods were studied by investigating defect density, surface energy, and point of zero charge. An empirical formula was developed for the prediction of ZnO nanorod morphology with time and pH value as variables. The defect ratio determined by photoluminescence indicated that the defect density with growth solutions having pH values was lower than the transition point, while the defect density is relatively high when pH is higher than the transition point.
Studies of Ag-doped ZnO nanorods report the possibility that the effectiveness of the Ag doping correlates with the pH value. In our study, the optimum doping amount was found to occur when the pH value was located at the transition point, which implies that conditions with the lowest zinc solubility may result in the most effective Ag doping. A Schottky diode was prepared by depositing Ag metal contacts on the Ag-doped ZnO nanorods. The optimum rectification ratio was found in 10% of Ag-doped ZnO rods.
關鍵字(中) ★ 透明導電物
★ 水熱法
★ 二氧化錫
★ 氧化鋅
關鍵字(英) ★ transparent conductive oxides
★ hydrothermal
★ tin oxide
★ zinc oxide
論文目次 中文摘要 I
Abstract II
誌謝 IV
Contents V
List of Figures VI
List of Tables X
Chapter 1 Introduction 1
1.1 Transparent conductive oxides (TCO) 1
1.2 Textured surface modification 2
1.3 Hydrothermal ZnO nanostructure 5
1.4 Doping in ZnO 11
1.5 Schottky diodes of metal-semiconductor 14
Chapter 2 Motivations 16
Chapter 3 The Study of Surface Textured SnO2 Thin Films 17
3.1 Experimental procedure 17
3.2 Results and discussion 18
Chapter 4 The Study of Ag-doped ZnO Nanorods Grown by Hydrothermal Processes 27
4.1 Experimental procedure 27
4.2 Results and discussion 29
Chapter 5 Summary 58
References 60
參考文獻 [1] R. V. Salvatierra, C. E. Cava, L. S. Roman, and A. J. G. Zarbin, "ITO-free and flexible organic photovoltaic device based on high transparent and conductive polyaniline/carbon nanotube thin films," Advanced Functional Materials, vol. 23, pp. 1490-1499, 2013.
[2] H. W. Wu, C. H. Chu, Y. F. Chen, Y. W. Chen, W. H. Tsai, S. H. Huang, and G. S. Chen, "Study of AZO thin films under different ar flow and sputtering power by rf magnetron sputtering," Proceedings of the International MultiConference of Engineers and Computer Scientists, vol. 2, pp. 0958-0966, 2013.
[3] E. Arca, K. Fleischer, and I. V. Shvets, "An alternative fluorine precursor for the synthesis of SnO2:F by spray pyrolysis," Thin Solid Films, vol. 520, pp. 1856-1861, 2012.
[4] Y. Hu, Y. Zhang, C. Xu, G. Zhu, and Z. L. Wang, "High-output nanogenerator by rational unipolar assembly of conical nanowires and its application for driving a small liquid crystal display," Nano Letters, vol. 10, pp. 5025-5031, 2010.
[5] H. J. Kim and J. H. Lee, "Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview," Sensors and Actuators B: Chemical, vol. 192, pp. 607-627, 2014.
[6] D. Miao, S. Jiang, S. Shang, and Z. Chen, "Highly transparent and infrared reflective AZO/Ag/AZO multilayer film prepared on PET substrate by RF magnetron sputtering," Vacuum, vol. 106, pp. 1-4, 2014.
[7] R. Bhattacharjee and I. M. Hung, "Effect of different concentration Li-doping on the morphology, defect and photovoltaic performance of Li–ZnO nanofibers in the dye-sensitized solar cells," Materials Chemistry and Physics, vol. 143, pp. 693-701, 2014.
[8] J. J. Lee, J. Y. Ha, W. K. Choi, Y. S. Cho, and J. W. Choi, "Doped SnO2 transparent conductive multilayer thin films explored by continuous composition spread," ACS Combinatorial Science, vol. 17, pp. 247-52, 2015.
[9] P. M. Mwathe, R. Musembi, M. Munji, F. Nyongesa, B. Odari, W. Njoroge, B. Aduda, and B. Muthoka, "Effect of annealing and surface passivation on doped SnO2 thin films prepared by spray pyrolysis technique," Advances in Materials, vol. 4, pp. 51-58, 2015.
[10] R. L. Mishra, S. K. Mishra, and S. G. Prakash, "Optical and gas sensing characteristics of tin oxide nano-crystalline thin film," Journal of Ovonic Research, vol. 5, pp. 77-85, 2009.
[11] K. S. Kim, S. Y. Yoon, W. J. Lee, and K. H. Kim, "Surface morphologies and electrical properties of antimony-doped tin oxide films deposited by plasma-enhanced chemical vapor deposition," Surface and Coatings Technology, vol. 138, pp. 229-236, 2001.
[12] M. V. Castro, M. F. Cerqueira, L. Rebouta, P. Alpuim, C. B. Garcia, G. L. Júnior, and C. J. Tavares, "Influence of hydrogen plasma thermal treatment on the properties of ZnO:Al thin films prepared by dc magnetron sputtering," Vacuum, vol. 107, pp. 145-154, 2014.
[13] J. Wienke, B. van der Zanden, M. Tijssen, and M. Zeman, "Performance of spray-deposited ZnO:In layers as front electrodes in thin-film silicon solar cells," Solar Energy Materials and Solar Cells, vol. 92, pp. 884-890, 2008.
[14] X. Feng, J. Ma, F. Yang, F. Ji, F. Zong, C. Luan, and H. Ma, "Transparent conducting SnO2:Sb epitaxial films prepared on α-Al2O3 (0001) by MOCVD," Materials Letters, vol. 62, pp. 1779-1781, 2008.
[15] R. Swapna and M. C. S. Kumar, "Fabrication and characterization of n-ZnO:Eu/p-ZnO:(Ag, N) homojunction by spray pyrolysis," Materials Research Bulletin, vol. 49, pp. 44-49, 2014.
[16] D. R. Sahu, S.-Y. Lin, and J.-L. Huang, "Investigation of conductive and transparent Al-doped ZnO/Ag/Al-doped ZnO multilayer coatings by electron beam evaporation," Thin Solid Films, vol. 516, pp. 4728-4732, 2008.
[17] T. Tynell, R. Okazaki, I. Terasaki, H. Yamauchi, and M. Karppinen, "Electron doping of ALD-grown ZnO thin films through Al and P substitutions," Journal of Materials Science, vol. 48, pp. 2806-2811, 2012.
[18] G. Yang, B. Wang, W. Guo, Q. Wang, Y. Liu, C. Miao, and Z. Bu, "Hydrothermal growth of low-density ZnO microrod arrays on nonseeded FTO substrates," Materials Letters, vol. 90, pp. 34-36, 2013.
[19] E. Yablonovitch and G. D. Cody, "Intensity enhancement in textured optical sheets for solar cells," IEEE Transactions on Electron Devices, vol. 29, pp. 300-305, 1982.
[20] J. Hu and R. G. Gordon, "Textured fluorine-doped ZnO films by atmospheric pressure chemical vapor deposition and their use in amorphous silicon solar cells," Solar Cells, vol. 30, pp. 437-450, 1991.
[21] T. Tohsophon, J. Hüpkes, H. Siekmann, B. Rech, M. Schultheis, and N. Sirikulrat, "High rate direct current magnetron sputtered and texture-etched zinc oxide films for silicon thin film solar cells," Thin Solid Films, vol. 516, pp. 4628-4632, 2008.
[22] T. Oyama, M. Kambe, N. Taneda, and K. Masumo, "Requirements for TCO substrate in Si-based thin film solar cells -toward tandem," Materials Research Society Symposium Proceeding, vol. 1101, pp. 01-07, 2008.
[23] A. Hongsingthong, T. Krajangsang, I. A. Yunaz, S. Miyajima, and M. Konagai, "ZnO films with very high haze value for use as front transparent conductive oxide films in thin-film silicon solar cells," Applied Physics Express, vol. 3, p. 051102, 2010.
[24] A. Bessonov, Y. Cho, S. J. Jung, E. A. Park, E. S. Hwang, J. W. Lee, M. Shin, and S. Lee, "Nanoimprint patterning for tunable light trapping in large-area silicon solar cells," Solar Energy Materials and Solar Cells, vol. 95, pp. 2886-2892, 2011.
[25] W. L. Lu, K. C. Huang, P. K. Hung, and M. P. Houng, "Study of textured ZnO:Al thin film and its optical properties for thin film silicon solar cells," Journal of Physics and Chemistry of Solids, vol. 73, pp. 52-56, 2012.
[26] Y. Wang, X. Zhang, L. Bai, Q. Huang, C. Wei, and Y. Zhao, "Effective light trapping in thin film silicon solar cells from textured Al doped ZnO substrates with broad surface feature distributions," Applied Physics Letters, vol. 100, p. 263508, 2012.
[27] M. Meier, U. W. Paetzold, M. Ghosh, and R. van Erven, "Periodic nano-textures enhance efficiency in multi-junction silicon thin-film solar cells," Physica Status Solidi A, vol. 212, pp. 30-35, 2015.
[28] W. T. Yen, Y. C. Lin, and J. H. Ke, "Surface textured ZnO:Al thin films by pulsed DC magnetron sputtering for thin film solar cells applications," Applied Surface Science, vol. 257, pp. 960-968, 2010.
[29] D. Wan, F. Huang, Y. Wang, X. Mou, and F. Xu, "Highly surface-textured ZnO:Al films fabricated by controlling the nucleation and growth separately for solar cell applications," ACS Applied Materials & Interfaces, vol. 2, pp. 2147-2152, 2010.
[30] X. L. Chen, F. Wang, X. H. Geng, D. K. Zhang, C. C. Wei, X. D. Zhang, and Y. Zhao, "Natively textured surface Al-doped ZnO-TCO layers with gradual oxygen growth for thin film solar cells via magnetron sputtering," Applied Surface Science, vol. 258, pp. 4092-4096, 2012.
[31] F. Wang, X. L. Chen, X. H. Geng, D. K. Zhang, C. C. Wei, Q. Huang, X. D. Zhang, and Y. Zhao, "Development of natively textured surface hydrogenated Ga-doped ZnO-TCO thin films for solar cells via magnetron sputtering," Applied Surface Science, vol. 258, pp. 9005-9010, 2012.
[32] D. S. Bhachu, M. R. Waugh, K. Zeissler, W. R. Branford, and I. P. Parkin, "Textured fluorine-doped tin dioxide films formed by chemical vapour deposition," Chemistry, vol. 17, pp. 11613-21, 2011.
[33] C. Guillén, J. Montero, and J. Herrero, "Transparent and conductive electrodes combining AZO and ATO thin films for enhanced light scattering and electrical performance," Applied Surface Science, vol. 264, pp. 448-452, 2013.
[34] K. Byrappa and T. Adschiri, "Hydrothermal technology for nanotechnology," Progress in Crystal Growth and Characterization of Materials, vol. 53, pp. 117-166, 2007.
[35] M. Guo, P. Diao, and S. Cai, "Hydrothermal growth of well-aligned ZnO nanorod arrays: Dependence of morphology and alignment ordering upon preparing conditions," Journal of Solid State Chemistry, vol. 178, pp. 1864-1873, 2005.
[36] J. Liang, J. Liu, Q. Xie, S. Bai, W. Yu, and Y. Qian, "Hydrothermal growth and optical properties of doughnut-shaped ZnO microparticles," Journal of Physical Chemistry B, vol. 109, pp. 9463-9467, 2005.
[37] F. Lu, W. Cai, and Y. Zhang, "ZnO hierarchical micro/nanoarchitectures: solvothermal synthesis and structurally enhanced photocatalytic performance," Advanced Functional Materials, vol. 18, pp. 1047-1056, 2008.
[38] K. C. Pradel, W. Wu, Y. Zhou, X. Wen, Y. Ding, and Z. L. Wang, "Piezotronic effect in solution-grown p-type ZnO nanowires and films," Nano Letters, vol. 13, pp. 2647-53, 2013.
[39] S. M. Hatch, J. Briscoe, A. Sapelkin, W. P. Gillin, J. B. Gilchrist, M. P. Ryan, S. Heutz, and S. Dunn, "Influence of anneal atmosphere on ZnO-nanorod photoluminescent and morphological properties with self-powered photodetector performance," Journal of Applied Physics, vol. 113, p. 204501, 2013.
[40] H. Zhang, J. Wu, C. Zhai, N. Du, X. Ma, and D. Yang, "From ZnO nanorods to 3D hollow microhemispheres: solvothermal synthesis, photoluminescence and gas sensor properties," Nanotechnology, vol. 18, p. 455604, 2007.
[41] Y. Z. Zheng, H. Ding, Y. Liu, X. Tao, G. Cao, and J. F. Chen, "In situ hydrothermal growth of hierarchical ZnO nanourchin for high-efficiency dye-sensitized solar cells," Journal of Power Sources, vol. 254, pp. 153-160, 2014.
[42] F. Z. Bedia, A. Bedia, and B. Benyoucef, "Electrical properties of ZnO/p-Si heterojunction for solar cell application," International Journal of Materials Engineering, vol. 3, pp. 59-65, 2013.
[43] J. W. Kang, Y. S. Choi, M. Choe, N. Y. Kim, T. Lee, B. J. Kim, C. W. Tu, and S. J. Park, "Electrical and structural properties of antimony-doped p-type ZnO nanorods with self-corrugated surfaces," Nanotechnology, vol. 23, p. 495712, 2012.
[44] A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, "Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO," Nature Materials, vol. 4, pp. 42-46, 2004.
[45] S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, and H. Shen, "ZnO Schottky ultraviolet photodetectors," Journal of Crystal Growth, vol. 225, pp. 110-113, 2001.
[46] J. I. Sohn, W. K. Hong, S. Lee, J. Y. Ku, Y. J. Park, J. Hong, S. Hwang, K. H. Park, J. H. Warner, S. Cha, and J. M. Kim, "Surface energy-mediated construction of anisotropic semiconductor wires with selective crystallographic polarity," Scientific Reports, vol. 4, pp. 1-7, 2014.
[47] L. N. Demianets, D. V. Kostomarov, I. P. Kuzmina, and S. V. Pushko, "Mechanism of growth of ZnO single crystals from hydrothermal alkali solutions," Crystallography Reports, vol. 47, pp. S86-S98, 2002.
[48] H. Zhang, D. Yang, Y. Ji, X. Ma, J. Xu, and D. Que, "Low temperature synthesis of flowerlike ZnO nanostructures by cetyltrimethylammonium bromide assisted hydrothermal process," The Journal of Physical Chemistry B, vol. 108, pp. 3955-3958, 2004.
[49] C. Tang, M. J. S. Spencer, and A. S. Barnard, "Activity of ZnO polar surfaces an insight from surface energies," Physical Chemistry Chemical Physics, vol. 16, pp. 22139-22144, 2014.
[50] Y. He, T. Yanagida, K. Nagashima, F. Zhuge, G. Meng, B. Xu, A. Klamchuen, S. Rahong, M. Kanai, X. Li, M. Suzuki, S. Kai, and T. Kawai, "Crystal-Plane Dependence of Critical Concentration for Nucleation on Hydrothermal ZnO Nanowires," The Journal of Physical Chemistry C, vol. 117, pp. 1197-1203, 2013.
[51] C. B. Tay, S. J. Chua, and K. P. Loh, "Investigation of morphology and photoluminescence of hydrothermally grown ZnO nanorods on substrates pre-coated with ZnO nanoparticles," Journal of Crystal Growth, vol. 311, pp. 1278-1284, 2009.
[52] D. Andeen, J. H. Kim, F. F. Lange, G. K. L. Goh, and S. Tripathy, "Lateral Epitaxial Overgrowth of ZnO in Water at 90 °C," Advanced Functional Materials, vol. 16, pp. 799-804, 2006.
[53] M. Valtiner, S. Borodin, and G. Grundmeier, "Stabilization and acidic dissolution mechanism of single crystalline ZnO(0001) surfaces in electrolytes studied by in-situ AFM imaging and ex-situ LEED," Langmuir, vol. 24, pp. 5350-5358, 2008.
[54] C. M. Shin, J. H. Heo, J. H. Park, T. M. Lee, H. Ryu, B. C. Shin, W. J. Lee, and H. K. Kim, "The effect of pH on ZnO hydrothermal growth on PES flexible substrates," Physica E: Low-dimensional Systems and Nanostructures, vol. 43, pp. 54-57, 2010.
[55] A. Goux, T. Pauporté, J. Chivot, and D. Lincot, "Temperature effects on ZnO electrodeposition," Electrochimica Acta, vol. 50, pp. 2239-2248, 2005.
[56] G. Amin, M. H. Asif, A. Zainelabdin, S. Zaman, O. Nur, and M. Willander, "Influence of pH, precursor concentration, growth time, and temperature on the morphology of ZnO nanostructures grown by the hydrothermal method," Journal of Nanomaterials, vol. 2011, pp. 1-9, 2011.
[57] V. Strano, R. G. Urso, M. Scuderi, K. O. Iwu, F. Simone, E. Ciliberto, C. Spinella, and S. Mirabella, "Double role of HMTA in ZnO nanorods grown by chemical bath deposition," The Journal of Physical Chemistry C, vol. 118, pp. 28189-28195, 2014.
[58] W. Guo, T. Liu, L. Huang, H. Zhang, Q. Zhou, and W. Zeng, "HMT assisted hydrothermal synthesis of various ZnO nanostructures: Structure, growth and gas sensor properties," Physica E: Low-dimensional Systems and Nanostructures, vol. 44, pp. 680-685, 2011.
[59] K. Govender, D. S. Boyle, P. B. Kenway, and P. O′Brien, "Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution," Journal of Materials Chemistry, vol. 14, p. 2575, 2004.
[60] A. Sugunan, H. C. Warad, M. Boman, and J. Dutta, "Zinc oxide nanowires in chemical bath on seeded substrates: Role of hexamine," Journal of Sol-Gel Science and Technology, vol. 39, pp. 49-56, 2006.
[61] M. L. Schmidt and D. J. L. MacManus, "ZnO – nanostructures, defects, and devices," Materials Today, vol. 10, pp. 40-48, 2007.
[62] S. Baruah and J. Dutta, "Hydrothermal growth of ZnO nanostructures," Science and Technology of Advanced Materials, vol. 10, p. 013001, 2009.
[63] J. Joo, B. Y. Chow, M. Prakash, E. S. Boyden, and J. M. Jacobson, "Face-selective electrostatic control of hydrothermal zinc oxide nanowire synthesis," Nat Mater, vol. 10, pp. 596-601, 2011.
[64] F. Oba, M. Choi, A. Togo, and I. Tanaka, "Point defects in ZnO: an approach from first principles," Science and Technology of Advanced Materials, vol. 12, p. 034302, 2011.
[65] B. Lin, Z. Fu, and Y. Jia, "Green luminescent center in undoped zinc oxide films deposited on silicon substrates," Applied Physics Letters, vol. 79, p. 943, 2001.
[66] A. Janotti and C. G. Van de Walle, "Native point defects in ZnO," Physical Review B, vol. 76, 2007.
[67] F. C. Chiu, "Conduction mechanisms in resistance switching memory devices using transparent boron doped zinc oxide films," Materials, vol. 7, pp. 7339-7348, 2014.
[68] I. Crupi, S. Boscarino, V. Strano, S. Mirabella, F. Simone, and A. Terrasi, "Optimization of ZnO:Al/Ag/ZnO:Al structures for ultra-thin high-performance transparent conductive electrodes," Thin Solid Films, vol. 520, pp. 4432-4435, 2012.
[69] C. Yuen, S. F. Yu, S. P. Lau, Rusli, and T. P. Chen, "Fabrication of n-ZnO:Al∕p-SiC(4H) heterojunction light-emitting diodes by filtered cathodic vacuum arc technique," Applied Physics Letters, vol. 86, p. 241111, 2005.
[70] J. H. Kim, B. D. Ahn, C. H. Lee, K. A. Jeon, H. S. Kang, and S. Y. Lee, "Effect of rapid thermal annealing on electrical and optical properties of Ga doped ZnO thin films prepared at room temperature," Journal of Applied Physics, vol. 100, p. 113515, 2006.
[71] T. Makino, Y. Segawa, S. Yoshida, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, "Gallium concentration dependence of room-temperature near-bandedge luminescence in n-type ZnO:Ga," Applied Physics Letters, vol. 85, pp. 759-761, 2004.
[72] D. Y. Ku, I. H. Kim, I. Lee, K. S. Lee, T. S. Lee, J. h. Jeong, B. Cheong, Y. J. Baik, and W. M. Kim, "Structural and electrical properties of sputtered indium–zinc oxide thin films," Thin Solid Films, vol. 515, pp. 1364-1369, 2006.
[73] B. Wang, M. J. Callahan, C. Xu, L. O. Bouthillette, N. C. Giles, and D. F. Bliss, "Hydrothermal growth and characterization of indium-doped-conducting ZnO crystals," Journal of Crystal Growth, vol. 304, pp. 73-79, 2007.
[74] S. Fujihara, C. Sasaki, and T. Kimura, "Effects of Li and Mg doping on microstructure and properties of sol-gel ZnO thin films," Journal of the European Ceramic Society, vol. 21, pp. 2109-2112, 2001.
[75] J. J. Lai, Y. J. Lin, Y. H. Chen, H. C. Chang, C. J. Liu, Y. Y. Zou, Y. T. Shih, and M. C. Wang, "Effects of Na content on the luminescence behavior, conduction type, and crystal structure of Na-doped ZnO films," Journal of Applied Physics, vol. 110, p. 013704, 2011.
[76] G. Shanmuganathan, I. B. S. Banu, S. Krishnan, and B. Ranganathan, "Influence of K-doping on the optical properties of ZnO thin films grown by chemical bath deposition method," Journal of Alloys and Compounds, vol. 562, pp. 187-193, 2013.
[77] K. S. Ahn, T. Deutsch, Y. Yan, C. S. Jiang, C. L. Perkins, J. Turner, and M. Al-Jassim, "Synthesis of band-gap-reduced p-type ZnO films by Cu incorporation," Journal of Applied Physics, vol. 102, p. 023517, 2007.
[78] M. H. Hsu and C. J. Chang, "Ag-doped ZnO nanorods coated metal wire meshes as hierarchical photocatalysts with high visible-light driven photoactivity and photostability," Journal of Hazard Mater, vol. 278, pp. 444-53, 2014.
[79] X. Yang, A. Wolcott, G. Wang, A. Sobo, R. C. Fitzmorris, F. Qian, J. Z. Zhang, and Y. Li, "Nitrogen doped ZnO nanowire arrays for photoelectrochemical water splitting," Nano Letters, vol. 9, pp. 2331-2336, 2009.
[80] Y. R. Ryu, T. S. Lee, J. H. Leem, and H. W. White, "Fabrication of homostructural ZnO p–n junctions and ohmic contacts to arsenic-doped p-type ZnO," Applied Physics Letters, vol. 83, p. 4032, 2003.
[81] C. L. Hsu, K. C. Chen, and T. J. Hsueh, "UV photodetector of a homojunction based on p-type Sb-doped ZnO nanoparticles and n-type ZnO nanowires," IEEE Transactions on Electron Devices, vol. 61, pp. 1347-1354, 2014.
[82] C. H. Park, S. B. Zhang, and S. H. Wei, "Origin of p-type doping difficulty in ZnO:The impurity perspective," Physical Review B, vol. 66, 2002.
[83] O. Volnianska, P. Boguslawski, J. Kaczkowski, P. Jakubas, A. Jezierski, and E. Kaminska, "Theory of doping properties of Ag acceptors in ZnO," Physical Review B, vol. 80, 2009.
[84] Q. Wan, Z. Xiong, J. Dai, J. Rao, and F. Jiang, "First-principles study of Ag-based p-type doping difficulty in ZnO," Optical Materials, vol. 30, pp. 817-821, 2008.
[85] U. Wahl, E. Rita, J. G. Correia, T. Agne, E. Alves, and J. C. Soares, "Lattice sites of implanted Cu and Ag in ZnO," Superlattices and Microstructures, vol. 39, pp. 229-237, 2006.
[86] S. J. Young, L. W. Ji, S. J. Chang, Y. P. Chen, and S. M. Peng, "ZnO Schottky diodes with iridium contact electrodes," Semiconductor Science and Technology, vol. 23, p. 085016, 2008.
[87] C. S. Lao, J. Liu, P. Gao, L. Zhang, D. Davidovic, R. Tummala, and Z. L. Wang, "ZnO nanobelt/nanowire schottky diodes formd by dielectrophoresis alignment across Au electrodes," Nano Letters, vol. 6, pp. 263-266, 2006.
[88] H. Kim, A. Sohn, and D.-W. Kim, "Silver Schottky contacts to Zn-polar and O-polar bulk ZnO grown by pressurized melt-growth method," Semiconductor Science and Technology, vol. 27, p. 035010, 2012.
[89] M. Shafiei, J. Yu, R. Arsat, K. Kalantar-zadeh, E. Comini, M. Ferroni, G. Sberveglieri, and W. Wlodarski, "Reversed bias Pt/nanostructured ZnO Schottky diode with enhanced electric field for hydrogen sensing," Sensors and Actuators B: Chemical, vol. 146, pp. 507-512, 2010.
[90] X. A. Zhang, F. Hai, T. Zhang, C. Jia, X. Sun, L. Ding, and W. Zhang, "Analysis of the electrical characteristics of the Ag/ZnO Schottky barrier diodes on F-doped SnO2 glass substrates by pulsed laser deposition," Microelectronic Engineering, vol. 93, pp. 5-9, 2012.
[91] H. Durmuş and U. l. Atav, "Extraction of voltage-dependent series resistance from I-V characteristics of Schottky diodes," Applied Physics Letters, vol. 99, p. 093505, 2011.
[92] S. K. Cheung and N. W. Cheung, "Extraction of Schottky diode parameters from forward current-voltage characteristics," Applied Physics Letters, vol. 49, p. 85, 1986.
[93] A. Tataroğlu and Ş. Altındal, "Analysis of interface states and series resistance of MIS Schottky diodes using the current–voltage (I–V) characteristics," Microelectronic Engineering, vol. 85, pp. 233-237, 2008.
[94] G. Haacke, "New figure of merit for transparent conductors," Journal of Applied Physics, vol. 47, p. 4086, 1976.
[95] C. Hudaya, J. H. Park, and J. K. Lee, "Effects of process parameters on sheet resistance uniformity of fluorine-doped tin oxide thin films," Nanoscale Research Letters, vol. 7, p. 17, 2012.
[96] D. S. Ghosh, T. L. Chen, and V. Pruneri, "High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid," Applied Physics Letters, vol. 96, p. 041109, 2010.
[97] T. H. Kim, C. H. Kim, S. K. Kim, Y. S. Lee, and L. S. Park, "High quality transparent conductive ITO/Ag/ITO multilayer films deposited on glass substrate at room temperature," Molecular Crystals and Liquid Crystals, vol. 532, pp. 112-118, 2010.
[98] J. J. Richardson and F. F. Lange, "Controlling low temperature aqueous synthesis of ZnO thermodynamic analysis," Crystal Growth & Design, vol. 9, pp. 2570-2575, 2009.
[99] S. Peulon and D. Lincot, "Mechanistic study of cathodic electrodeposition of zinc oxide and zinc hydroxychloride films from oxygenated aqueous zinc chloride solutions," Journal of Electrochemiacl Society, vol. 145, pp. 864-874, 1998.
[100] S. Yamabi and H. Imai, "Growth conditions for wurtzite zinc oxide films in aqueous solutions," Journal of Materials Chemistry, vol. 12, pp. 3773-3778, 2002.
[101] J. M. Jang, S. D. Kim, H. M. Choi, J. Y. Kim, and W. G. Jung, "Morphology change of self-assembled ZnO 3D nanostructures with different pH in the simple hydrothermal process," Materials Chemistry and Physics, vol. 113, pp. 389-394, 2009.
[102] A. Degen and M. Kosec, "Effect of pH and impurities on the surface charge of zinc oxide in aqueous solution," Journal of the European Ceramic Society, vol. 20, pp. 667-673, 2000.
[103] L. Han, N. Van Nong, W. Zhang, L. T. Hung, T. Holgate, K. Tashiro, M. Ohtaki, N. Pryds, and S. Linderoth, "Effects of morphology on the thermoelectric properties of Al-doped ZnO," RSC Advances, vol. 4, p. 12353, 2014.
[104] W. Li, E. Shi, W. Zhong, and Z. Yin, "Growth mechanism and growth habit of oxide crystals," Journal of Crystal Growth, vol. 203, pp. 186-196, 1999.
[105] M. N. R. Ashfold, R. P. Doherty, N. G. Ndifor-Angwafor, D. J. Riley, and Y. Sun, "The kinetics of the hydrothermal growth of ZnO nanostructures," Thin Solid Films, vol. 515, pp. 8679-8683, 2007.
[106] W. Li, C. Kong, G. Qin, H. Ruan, and L. Fang, "p-Type conductivity and stability of Ag–N codoped ZnO thin films," Journal of Alloys and Compounds, vol. 609, pp. 173-177, 2014.
[107] R. Chen, C. Zou, J. Bian, A. Sandhu, and W. Gao, "Microstructure and optical properties of Ag-doped ZnO nanostructures prepared by a wet oxidation doping process," Nanotechnology, vol. 22, p. 105706, 2011.
[108] K. Kim, P. C. Debnath, D. H. Lee, S. Kim, and S. Y. Lee, "Effects of silver impurity on the structural, electrical, and optical properties of ZnO nanowires," Nanoscale Research Letters, vol. 6, p. 552, 2011.
[109] Ö. A. Yıldırım, H. E. Unalan, C. Durucan, and L. Klein, "Highly Efficient Room Temperature Synthesis of Silver-Doped Zinc Oxide (ZnO:Ag) Nanoparticles: Structural, Optical, and Photocatalytic Properties," Journal of the American Ceramic Society, vol. 96, pp. 766-773, 2013.
[110] S. Khosravi Gandomani, R. Yousefi, F. Jamali Sheini, and N. M. Huang, "Optical and electrical properties of p-type Ag-doped ZnO nanostructures," Ceramics International, vol. 40, pp. 7957-7963, 2014.
[111] L. Oleg, C. Lee, K. O. Luis, B. R. Cuenya, G. Chai, H. Khallaf, S. Park, and A. Schulte, "Synthesis and characterization of Ag or Sb doped ZnO nanorods by facile hydrothermal route," The Journal of Physical Chemistry C, vol. 114, p. 12401, 2010.
[112] S. Ilican, "Effect of Na doping on the microstructures and optical properties of ZnO nanorods," Journal of Alloys and Compounds, vol. 553, pp. 225-232, 2013.
[113] B. Panigrahy, M. Aslam, D. S. Misra, M. Ghosh, and D. Bahadur, "Defect-related emissions and magnetization properties of ZnO nanorods," Advanced Functional Materials, vol. 20, pp. 1161-1165, 2010.
[114] A. B. Djurisic and Y. H. Leung, "Optical properties of ZnO nanostructures," Small, vol. 2, pp. 944-61, 2006.
[115] W. N. Wang, F. Wu, Y. Myung, D. M. Niedzwiedzki, H. S. Im, J. Park, P. Banerjee, and P. Biswas, "Surface engineered CuO nanowires with ZnO islands for CO2 photoreduction," ACS Appl Mater Interfaces, vol. 7, pp. 5685-5692, 2015.
[116] C. R. Catlow, A. A. Sokol, and A. Walsh, "Microscopic origins of electron and hole stability in ZnO," Chemical Communication, vol. 47, pp. 3386-3388, 2011.
[117] A. A. Sokol, S. A. French, S. T. Bromley, C. R. A. Catlow, H. J. J. van Dam, and P. Sherwood, "Point defects in ZnO," Faraday Discussions, vol. 134, pp. 267-282, 2007.
[118] B. Lin, Z. Fu, Y. Jia, and G. Liao, "Defect photoluminescence of undoping ZnO films and its dependence on annealing conditions," Journal of The Electrochemical Society, vol. 148, p. G110, 2001.
[119] Y. Zhu, C. H. Sow, T. Yu, Q. Zhao, P. Li, Z. Shen, D. Yu, and J. T. L. Thong, "Co-synthesis of ZnO–CuO Nanostructures by Directly Heating Brass in Air," Advanced Functional Materials, vol. 16, pp. 2415-2422, 2006.
[120] S. Dhara and P. Giri, "Enhanced UV photosensitivity from rapid thermal annealed vertically aligned ZnO nanowires," Nanoscale Research Letters, vol. 6, p. 504, 2011.
[121] J. Tauc, R. Grigorovici, and A. Vancu, "Optical properties and electronic structure of amorphous germanium," Physica status solidi, vol. 15, pp. 627-637, 1966.
[122] D. R. Sahu, "Studies on the properties of sputter-deposited Ag-doped ZnO films," Microelectronics Journal, vol. 38, pp. 1252-1256, 2007.
[123] R. S. Zeferino, M. B. Flores, and U. Pal, "Photoluminescence and raman scattering in Ag-doped ZnO nanoparticles," Journal of Applied Physics, vol. 109, p. 014308, 2011.
[124] M. Karyaoui, A. Mhamdi, H. Kaouach, A. Labidi, A. Boukhachem, K. Boubaker, M. Amlouk, and R. Chtourou, "Some physical investigations on silver-doped ZnO sprayed thin films," Materials Science in Semiconductor Processing, vol. 30, pp. 255-262, 2015.
[125] L. Duan, W. Gao, R. Chen, and Z. Fu, "Influence of post-annealing conditions on properties of ZnO:Ag films," Solid State Communications, vol. 145, pp. 479-481, 2008.
[126] L. Tang, B. Wang, Y. Zhang, and Y. Gu, "Structural and electrical properties of Li-doped p-type ZnO thin films fabricated by RF magnetron sputtering," Materials Science and Engineering: B, vol. 176, pp. 548-551, 2011.
[127] C. L. Tsai, M. S. Wang, Y. H. Chen, H. C. Chang, C. J. Liu, C. T. Lee, Y. T. Shih, H. J. Huang, and Y. J. Lin, "Effects of Li content on the structural, optical, and electrical properties of LiZnMgO films," Journal of Applied Physics, vol. 107, p. 113717, 2010.
[128] C. B. Tay, J. Tang, X. S. Nguyen, X. H. Huang, J. W. Chai, V. T. Venkatesan, and S. J. Chua, "Low temperature aqueous solution route to reliable p-type doping in ZnO with K: growth chemistry, doping mechanism, and thermal stability," The Journal of Physical Chemistry C, vol. 116, pp. 24239-24247, 2012.
[129] S. S. H. Hosseini, S. R. Raza, H. S. Lee, and S. Im, "Non-classical logic inverter coupling a ZnO nanowire-based Schottky barrier transistor and adjacent Schottky diode," Physical Chemistry Chemical Physics, vol. 16, pp. 16367-16372, 2014.
[130] J. D. Hwang, C. Y. Kung, and Y. L. Lin, "Non-surface-treated Au/ZnO Schottky diodes using pre-annealed hydrothermal or sol-gel seed layer," IEEE Transcations on Nanotechnology, vol. 12, pp. 35-39, 2013.
[131] T. Krajewski, G. Luka, L. Wachnicki, M. I. Lukasiewicz, A. J. Zakrzewski, B. S. Witkowski, R. Jakiela, E. Lusakowska, K. Kopalko, B. J. Kowalski, M. Godlewski, and E. Guziewicz, "Schottky junctions with silver based on zinc oxide grown by atomic layer deposition," Physics and Chemistry of Solid State, vol. 12, pp. 224-229, 2011.
[132] T. Krajewski, G. Luka, P. S. Smertenko, A. J. Zakrzewski, K. Dybko, R. Jakiela, L. Wachnicki, S. Gieraltowska, B. S. Witkowski, M. Godlewski, and E. Guziewicz, "Schottky junction based on the ALD-ZnO thin films for electronic applications," ACTA Physica Polonica A, vol. 120, pp. 17-21, 2011.
指導教授 吳子嘉(Albert T. Wu) 審核日期 2015-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明