以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:38 、訪客IP:3.144.45.187
姓名 陳映任(Ying-Jen Chen) 查詢紙本館藏 畢業系所 環境工程研究所 論文名稱 利用稀釋程序建立以分光光度計量測水中COD濃度方法之研究
(Using the dilute procedures to establish the method for measured COD concentration in water)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 為達到未來廢水處理自動化提升處理水質和穩定性等目的,必須能即時掌握廢水處理系統中廢水之水質與水量特性。本研究主要關注於化學需氧量濃度,於水質上,廢水處理系統出流水濃度必須符合法規規定之排放標準;於處理控制上,廢水處理操作者必須能夠監測廢水中各項水質濃度與水量的資訊,以便進行適當之處理控制,故量測COD濃度於環境上或控制上皆相當重要。本研究利用光學量測技術建立水中COD濃度量測之方法,並透過水樣前處理程序降低干擾後,利用分光光度計掃描,得知其廢水特性且建立具吸光效應有機物的吸光度與COD濃度間之關係,達到對水中COD濃度的定量。其中前處理方法又以稀釋程序於分析時間上、程序步驟上及經濟成本考量上皆較占優勢。本研究PCB產業COD濃度量測方法驗證結果如下:T廠進流水COD推估濃度與人工檢測分析平均差異為15.91 %,出流水為7.00 %;S廠進流水平均差異為29.48 %,出流水為22.77 %,驗證結果佳。此套量測COD濃度建置方法將針對不同水質特性的廢水,建置出適用於該廢水之COD濃度推估模式,未來將與自動監控技術結合,即時得知水質狀況,以作為廢水處理控制參考或應用於預警訊息的提供。
摘要(英) In order to achieve the purpose of wastewater treatment automation and improved the water quality and stability in future, we must be able to collect the water quality and quantity characteristics of the wastewater in wastewater treatment system immediately. This study is focused on the concentration of chemical oxygen demand. For water quality, effluent concentration of the wastewater treatment system must comply with the emission standards of the regulations; for process control, operator must be able to monitor the concentration information to control the wastewater treatment process appropriately. Therefore, measure the COD concentration for the environment or water treatment control is very important. In this study, using optical measurement techniques to establish the COD concentration measurement method, and through the water sample pre-treatment program to reduce the interference.By using spectrophotometer scan, we can get some of the wastewater characteristics. Besides, we build the relationship between the absorbance of the organic and COD concentration to quantify the COD concentration. Overall, in three kind of water sample pre-treatment process, consider the analysis time and economic costs ,dilution procedures is the best process.This method validation results for COD concentration of two PCB companies are as follows: T company estimated of the COD concentration compared to standard method, the mean difference for inflow and outflow is 15.91 % and 7.00 %; S company T the mean difference for inflow and outflow is 29.48 % and 22.77 %. Both of two companies had good validation results, and this COD concentration measuring method will build case by case for different water quality characteristics of wastewater. In future, it will combined with automatic monitoring technology, to gain the water quality conditions immediately, or provide for warning messages when COD concentration is unusual.
關鍵字(中) ★ COD濃度
★ 吸收光譜分析
★ 分光光度計關鍵字(英) ★ COD concentration
★ Absorption Spectrometry
★ Spectrophotometer論文目次 目錄
中文摘要 ............................................... i
英文摘要 ............................................... iii
目錄 .................................................. v
表目錄 ................................................ ix
圖目錄 ................................................ xi
第一章 前言 .......................................... 1
1.1研究緣起 ............................................. 1
1.2研究目的.............................................. 2
第二章 文獻回顧......................................... 3
2.1自動監測發展現況與未來需求............................... 3
2.1.1自動監測發展現況..................................... 3
2.1.2國內水質監測之需求分析................................ 4
2.1.3放流水質訂定之標準................................... 5
2.2化學需氧量分析方法與發展現況............................. 6
2.2.1量測水中需氧量之方法.................................. 6
2.2.2化學需氧量量測方法發展之現況........................... 7
2.2.3化學需氧量線上量測設備發展之現況........................ 8
2.3光學原理.............................................. 10
2.3.1光與光學特性......................................... 10
2.3.2吸收光譜原理與種類.................................... 12
2.4吸收光譜量測有機物之技術發展與應用......................... 14
第三章 研究方法........................................... 17
3.1研究流程.............................................. 17
3.2整理水質特性........................................... 19
3.3整理吸收光譜原理....................................... 19
3.4整理水質吸光原理....................................... 19
3.5探討水中影響吸收光譜之因子............................... 20
3.5.1建立影響因子之驗證方法................................ 20
3.5.2建立降低干擾之方法................................... 21
3.6建立COD濃度量測之方法.................................. 23
3.6.1研究對象........................................... 24
3.6.2分析儀器與設備...................................... 25
3.6.3實驗流程與內容...................................... 27
3.6.4有機物吸光波峰判定之方法.............................. 32
3.6.5建立COD濃度推估模式之方法............................. 33
第四章 結果與討論......................................... 35
4.1整理水質特性結果與探討.................................. 35
4.1.1水中成分種類........................................ 35
4.1.2水質特性........................................... 37
4.1.3小結.............................................. 38
4.2整理吸收光譜原理結果與探討.............................. 38
4.2.1吸收光譜原理........................................ 38
4.2.2影響吸收光譜分析之因素................................ 42
4.2.3小結............................................... 44
4.3整理水質吸光原理結果與探討............................... 44
4.3.1水中顆粒吸光原理及作用機制............................. 45
4.3.2水中有機物吸光原理及作用機制........................... 45
4.3.3水中無機物吸光原理及作用機制........................... 46
4.3.4小結............................................... 47
4.4水中影響吸收光譜因子之驗證結果與探討....................... 47
4.4.1水中影響因子驗證結果與探討............................. 48
4.4.2降低水中干擾因子之方法驗證結果與探討..................... 53
4.4.3小結............................................... 58
4.5量測COD濃度方法之探討.................................. 59
4.5.1研究對象廢水概況分析與探討............................. 59
4.5.2標準方法量測COD濃度結果探討............................ 61
4.5.3有機物吸光波段判定之探討............................... 62
4.2.3小結............................................... 81
4.6 COD濃度推估模式驗證結果與探討........................... 83
4.6.1現有方法建立COD濃度推估模式驗證結果與探討................. 83
4.6.2經前處理之COD濃度推估模式驗證結果與探討.................. 86
4.6.3 經前處理有機物波段COD濃度推估模式驗證結果與探討...........92
4.6.4小結............................................... 98
第五章 結論與建議......................................... 103
5.1結論................................................. 103
5.2建議................................................. 104
參考文獻................................................. 105
致謝.....................................................109
參考文獻 Azema, N., M.F. Pouet, C. Berho and O. Thomas , (2000) “ Colloids and Surfaces A: Physicochemical and Engineering Aspects, ” Elsevier B.V. All rights reserved , Vol. 204, Issue 10, pp. 131-140 .
Azema, N., M.F., Pouet, C. Berho and O. Thomas, (2002) “ Wastewater Suspended Solids Study by Optical Methods, ” Colloids and Surfaces, Vol. 204, Issue 1-3, pp. 131-140 .
Ayrton, F., R. Daniel, B. Carla and M. Luciane, (2008) “ COD Evaluation of Hospital Effluent by Means of UV-Spectral Deconvolution, ” WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Vol. 36, Issue 10 – 11, pp. 875 – 878 .
Douglas, A., F. James and R. Stanley, (2007) “ Principles of instrumental analysis, ” Thomson learning company .
Fogelman, S., Z. Huijun and M. Blumenstein, (2006) “ A Rapid Analytical Method for Predicting the Oxygen Demand of Wastewater, ” Anal Bioanal Chem, Vol. 386, Issue 6, pp.1773–1779 .
Gen-Shuh, W. and H.Shu-Ting, (2001) “ Monitoring Natural Organic Matter in Water with Scanning Spectrophotometer, ” Elsevier Science Ltd., Vol. 26, Issue 4, pp. 205–212 .
Huoliang, K. and W. Huifang , (2009) “ A Rapid Determination Method of Chemical Oxygen Demand in Printing and DyeingWastewater Using Ultraviolet Spectroscopy, ” Water Environment Research, Vol. 81, Issue 11.
Langergraber, G., N. Fleischmann and F. Hofstadter, (2003) “ A Multivariate Calibration Procedure for UV/VIS Spectrometric Quantification of Orangic Matter and Nitrate in Wasterwater, ” Water Science and Technology, Vol. 47, Issue 2, pp.63-71 .
Mrkva, M., (1975) “ Automatic U.V.-Control System for Relative Evaluation of Organic Water Pollution, ” Water Research, Vol. 9, Issues 5-6, pp. 587-589 .
Mrkva, M., (1983) “ Evaluation of Correlation between Absorbance at 254 nm and COD of River Water, ” Water Research, Vol. 17, Issues 2, pp. 231-235 .
Mafalda, C.S. and A. Paulo, (2009) “ Quantitative Monitoring of an Activated Sludge Reactor Using On-line UV-visible and Near-infrared Spectroscopy, ” Analytical and Bioanalytical Chemistry, Vol. 395, Issue 4, pp. 1159-1166 .
Mehta, A., (2012) “Ultraviolet-Visible (UV-Vis) Spectroscopy-Derivation of Beer-Lambert Law, ” ANALYTICAL CHEMISTRY.
Norris, K.H. and Williams P.C., (1984) “ Optimization of Mathematical Treatment of Raw Near Infrared of Signal in the Measurement of Protein in Hard Red Spring Wheat.Influence of Partical Size, ” Cereal Chemistry, Vol. 61, Issue 2, pp. 158-165 .
Qiong, Y., L. Zhenyao and Y. Jidong, (2009) “ Simultaneous Determination of Chemical Oxygen Demand(COD) and Biological Oxygen Demand(BOD5) in Wasterwater by Near-Infrared Spectrometry, ” Journal of Water Resource and Protection , Vol. 1, Issue 4, pp.286-289 .
Richard, A.D., H.W. Robert and B.D. Robert, (1972) “ The Use of Ultra-violet Absorbance for Monitoring theTotal Orangic Carbom Content of Water and Wastewater, ” Water Rsesarch Pergamon Press, Vol. 6, Issue 10, pp.1173-1180 .
Rupak, A., V.Saevanamuthu and J. kandasamy, (2011) “ Application of Ultraviolet (UV) Spectrophotometry in the Assessment of Membrane Bioreactor Performance for Monitoring Water and Wastewater Treatment, ” Society for Applied Spectroscopy, Vol. 65, Issue 2, pp.227-232 .
Shoshana, F., M. Blumenstein and Z. Huijun, (2005) “ Estimation of Chemical Oxygen Demand by Ultraviolet Spectroscopic Profiling and Artificial Neural Networks, ” Neural Computing & Applications, Vol. 15, pp.197-203 .
Sousa, U. and Margarida, (2007) “ Monitoring Biodiesel Fuel Quality by Near Infrared Spectroscopy, ” Ournal of Near Infrared Spectroscopy, Vol. 15, Issue 2, pp. 97 .
Thoman, O. and C.Burgess, (2007) “ UV-Visible Spectrophtometry of Water and Wastewater, ” Elsevier B.V All rights reserved, Vol. 27, 1st Edition .
Vaillant, S., M.F. Pouet and O. Thomas, (2002) “ Basic Handling of UV Spectra for Urban Water Quality Monitoring, ” Elsevier Science Ltd, Vol. 4, Issue 3, pp.273-281 .
Williams, D.H. and I. Fleming, (1972) “ Spectroscopic Methods in Organic Chemistry, ” 歐亞書局有限公司.
李勇、為益民、王峰(2005),「影響近紅外光譜分析結果準確性的因素」,核農學報,第19卷,第3期, 236-240頁。
李姿儀(2009),「利用多波長UV/VIS吸收光譜建立廢水中COD與SS自動監測技術之可行性研究」,國立中央大學環境工程研究所碩士論文。
林敬二譯(1999),「儀器分析」,美亞書出版股份有限公司。
林俊全、孫志鴻、將昭皚、莊振義、梁偉文、戴慧玲、吳湘雲(2010),「感測網在水污染監測之應用研究-國內外案例探討與應用分析」,化工技術第18卷第5期,環境監測與分析專輯。
莊茂森,「迷光之探討」,環檢所通訊雜誌第十九期。
陳德請、吳世揚(2003),「生物光電工程導論」,全華科技圖書股份有限公司。
游庶海(1979),「北港溪河川污染有機特性之研究」,國立成功大學土木工程研究所碩士論文。
游佩蓉(2009),「利用UV/VIS/NIR吸收光譜同步量測水中SS、有機物及重金屬之研究」,國立中央大學環境工程研究所碩士論文。
楊萬發(1990),「水及廢水處理化學」,茂昌圖書有限公司。
蔡國鈞、蔣守銘、高信福,「廢水處理實務心得:COD說清楚」,環保技術e報第64期。
廖憶華(2006),「以光學頻譜分析定性及定量廢水水質特性之研究」,國立中央大學環境工程研究所碩士論文。
鄭禹祥(2007),「COD、SS及流量即時自動監測系統之發展與建立」,國立中央大學環境工程研究所碩士論文。
歐陽嶠暉(2008),「下水道工程學」,長松文化興業股份有限公司,第五版。
環境保護署,環境檢測方法-水中化學需氧量檢測方法,NIEA 517.52B。
環境保護署,環境檢測方法-水中總溶解固體及懸浮固體檢測方法-103 ℃~105 ℃乾燥,NIEA 210.57A。
環境保護署,環境檢測方法-水中銀、鎘、鉻、銅、鐵、錳、鎳、鉛及鋅檢測 方法-火焰式原子吸收光譜法,NIEA 306.52A。
工業區水質自動監測 (視) 及連線傳輸作業規定 (草案) 。
行政院環境保護署放流水標準條文(2011)。
指導教授 廖述良(Liaw-Shu Liang) 審核日期 2012-7-17 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare