博碩士論文 993207019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.147.77.76
姓名 陳思鈞(Szu-Chun Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 波長調制外差散斑干涉術應用於角度量測之研究
(Wavelength-modulated heterodyne speckle interferometry for angular displacement measurement)
相關論文
★ 外差光學式光柵干涉儀之研究★ 以二維影像重建三維彩色模型之色彩紋理貼圖技術與三維模型重建系統發展
★ 雷射干涉儀於共焦顯微系統之軸向定位控制★ 偏振干涉術使用在量測旋光效應及葡萄糖濃度
★ 準共光程干涉術之新式大尺度定位平台之研究★ 全場光強差動式表面電漿共振偵測技術
★ 基於全內反射波長調制外差干涉術小角度測量★ 新型波長調制外差光源應用於位移量測
★ 疊紋式自動準直儀系統★ 雙影像多視角結構光轉三維點資料技術發展
★ 偏振式駐波干涉儀應用於位移量測★ 雙共焦顯微鏡用於物體厚度量測
★ 以電漿診斷工具進行太陽電池用矽薄膜製程開發★ 基於全反射共光程偏振干涉術之折射率量測技術
★ 點繞射干涉儀應用於透鏡之像差量測★ Gioia 和 Chakraborty 紊流摩擦係數模型之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究開發一套「波長調制外差散斑干涉術」,可用以進行精密滾轉角度量測。利用雷射二極體之波長可隨外加電流調制的特性,用以產生外差光源,可克服傳統利用旋轉波片、電光調制器及聲光調制器等商用外差光源調制元件所產生之缺點。該波長調制外差散斑干涉術搭配自行開發的相位調解程式,可擷取因待測物旋轉時所引入的角位移變化資訊,藉由弧長與轉動角度間的數學關係式,回推待測物之角位移量。本系統光學原理簡單、易於架設、成本低及待測物表面不需經過特別處理等優點,可克服其他滾轉量測系統的缺點,是一套極具開發價值的滾轉量測系統。
本系統之理論解析度可達1.08 ?deg,考慮環境雜訊、機械振盪等因素,經實驗證明本套系統可量測之最小解析度為0.00048°,靈敏度為0.081°/?deg,系統最大可量測之速度極限為0.29°/s,可量測之最大相對滾轉角度保守估計為0.08°,其原因主要受限於干涉訊號對比度消長的問題。
本論文除了針對可能造成量測系統的誤差進行討論外,也提供可能影響干涉訊號對比度之參數進行測定實驗結果,以期待未來能夠建構出適當的物理模型解釋干涉訊號對比度消長之現象以解決因其現象所造成量測範圍受限之缺憾。
摘要(英) This study presents a simple method to measure angular displacements by wavelength-modulated heterodyne speckle interferometer. We modulated the wavelength of laser diode by injection current to replace commercial component to produce heterodyne light source. In addition, the speckle interferometer has compact optical arrangement and reduction of the cost. And we designed an algorithm to calculate the phase variation which results from the object movement.
The theoretical predication shows that the resolution is about 1.08 micro-deg. However, the experimental results verified that the minimum resolution is 0.00048° with considering the ambient perturbation and mechanical vibration. Then, the sensitivity can achieve 0.009°/micro-deg and the maximum velocity of measurement limited down to 0.29°/s. Unfortunately, the measurement range was confined because the interference contrast will disappear and grow up repeatedly when the object moves.
The system is quite a potential in domain of rolling measurement if the issue before we mentioned was being solved.
關鍵字(中) ★ 外差干涉術
★ 波長調制
★ 光學量測
★ 角度量測
★ 散斑干涉術
關鍵字(英) ★ optical metrology
★ wavelength-modulated
★ speckle interferometer
★ laser diode
★ heterodyne interferometry
★ angular displacement
★ interference contrast
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1研究背景 1
1.2研究目的 2
1.3文獻回顧 3
1.3.1外差干涉術之文獻回顧 3
1.3.2波長調制外差干涉術之文獻回顧 6
1.3.3散斑干涉術之文獻回顧 8
1.3.4角度量測之文獻回顧 11
1.4 論文章節簡介 16
第二章 基礎理論 18
2.1外差干涉術 18
2.2波長調制外差干涉系統 19
2.2.1雷射二極體 19
2.2.2波長調制外差干涉術 20
2.3面內位移引入相位變化 23
2.3.1散斑干涉術 24
2.3.2都卜勒移頻 25
2.3.3光柵干涉術 25
2.4面內位移導入角位移變化 26
2.5小結 27
第三章 系統架構 29
3.1架構元件與系統介紹 29
3.2波長調制外差散斑干涉系統 31
3.2.1波長調制外差光源系統 32
3.2.2散斑干涉術應用於滾轉量測系統 32
3.2.3相位調解演算法 35
3.3干涉訊號消長相關參數測定實驗系統 36
3.4小結 36
第四章 實驗結果與討論 38
4.1旋轉角度量測範圍測定 38
4.1.1旋轉角度量測範圍測定─0.0012° 38
4.1.2旋轉角度量測範圍測定─0.01° 40
4.1.3旋轉角度量測範圍測定─0.1° 41
4.2往返角位移量測定 42
4.2.1往返角位移量測定─0.00048° 42
4.2.2往返角度量測範圍測定─0.006° 43
4.2.3往返角度量測範圍測定─0.01° 44
4.3實驗結果討論 46
4.3.1量測重複性 46
4.3.2量測解析度 47
4.3.3量測靈敏度 47
4.3.4量測速度極限 48
4.4干涉訊號消長現象之參數測定 48
4.4.1往返位移運動之干涉訊號消長狀態測定 49
4.4.2散射面表面狀態與干涉訊號消長關係測定 52
4.4.3對光準直度與干涉訊號消長關係測定 54
4.4.4干涉光束通過透鏡與否與干涉訊號消長關係測定 57
4.4.5收光孔徑大小與干涉訊號消長關係測定 59
4.4.6光偵測器與散射面之距離與干涉訊號消長關係測定 61
4.5小結 64
第五章 誤差分析 66
5.1系統誤差 66
5.1.1波長變化誤差 66
5.1.2系統架構對位誤差 67
5.1.3非理想法線對位誤差 68
5.2隨機誤差 69
5.2.1環境振動 69
5.2.2環境溫度 70
5.3小結 70
第六章 結論與未來展望 72
6.1結論 72
6.2未來展望 74
參考文獻 77
圖表出處 80
參考文獻 [1]. S. Hosoe and S. I. Tanaka, “A low-cost method of obtaining a stable environment for a highly precise displacement-measuring laser interferometer,” Nanotechnology, Vol. 6, pp. 24-28, 1995.
[2]. Y. Jourlin et al., “Compact diffractive interferometric displacement sensor in reflection,” Precision Engineering, Vol. 26, pp. 1-6, 2002.
[3]. J. Y. Lee and D. C. Su, “Improved common-path optical heterodyne interferometer for measuring small optical rotation angle of chiral medium,” Optics Communication, Vol. 256, pp. 337-341, 2005.
[4]. S. T. Lin et al., “Angular probe based on using Fabry-Perot etalon and scanning technique,” Optics Express, Vol. 18, No. 3, pp. 1794-1800, 2010.
[5]. P. J. Caber, “Interferometric profiler for rough surfaces,” Applied Optics, Vol. 32, pp. 3438-3441, 1993.
[6]. U. P. Kumar et al., “Two-wavelength micro-interferometry for 3-D surface profiling,” Optical and Lasers in Engineering, Vol. 47, pp. 223-229, 2009.
[7]. H. Maruyama et al., “Low-coherence interferometer system for the simultaneous measurement of refractive index and thickness,” Applied Optics, Vol. 41, pp. 1315-1322, 2002.
[8]. G. Coppola et al., “Method for measuring the refractive index and the thickness of transparent plates with a lateral-shear, wavelength-scanning interferometer,” Applied Optics, Vol. 42, pp. 3882-3887, 2003.
[9]. 范光照,王志雄,機械工業雜誌,348期,工業技術研究院機械所,台灣,2012。
[10]. B. Li et al., “Study on the measurement of in-plane displacement of solid surfaces by laser Doppler velocimetry,” Optics and Laser Technology, Vol. 2, pp. 89-93, 1995.
[11]. 陳光鑫,林振華,光電子學,全華科技圖書股份有限公司,台灣,pp. 6-11,2002。
[12]. C. F. Kao, et al., “Double-diffraction planar encoder by conjugate optics,” Optical Engineering, Vol. 44(2), 023603, 2005.
[13]. R. Crane, “Interference phase measurement,” Applied Optics, Vol. 8, No.3, pp. 583-542, 1969.
[14]. D. C. Su et al., “A heterodyne interferometer using an electro-optical modulator for measuring small displacements,” Journal of Optics, Vol. 27, pp. 16-23, 1996.
[15]. J. Y. Lee et al., “Optical heterodyne grating interferometry for displacement measurement with subnanometric resolution,” Sensors and Actuators A, Vol. 137, pp. 185-191, 2007.
[16]. Y. Zhong et al., “A differential laser Doppler system for one-dimensional in-plane motion measurement of MEMS,” Measurement, pp. 623-627, 2007.
[17]. K. Creath, “Interferometric investigation of a diode laser source,” Applied Optics, Vol.24, No.9, pp. 1291-1293, 1985.
[18]. K. Tatsuno and Y. Tsunoda, “Diode laser direct modulation heterodyne interferometer,” Applied Optics, Vol. 26, pp. 37-40, 1987.
[19]. J. Chen et al., “Heterodyne interferometry with a frequency-modulated laser diode,” Applied Optics, Vol. 27, pp. 124-128, 1988.
[20]. Y. Ishii et al., “Phase-shifting Fizeau interference microscope with a wavelength-tunable laser diode,” Optical Engineering, Vol. 42, pp. 60-67, 2003.
[21]. R. Onodera and Y. Ishii, “Phase-shift-locked interferometer with a wavelength-modulated laser diode,” Applied Optics, Vol. 24, No. 1, pp. 91-96, 2003.
[22]. Y. Jourlin et al., “Compact diffractive interferometric displacement sensor in reflection,” Precision Engineering, Vol. 26, pp. 1-6, 2002.
[23]. C. C. Hsu et al., “Reflection type heterodyne grating interferometry for in-plane displacement measurement,” Optics Communications, Vol. 281, pp. 2582-2589, 2008.
[24]. S. T. Lin, “Three-dimensional displacement measurement using a newly designed moire interferometer,” Optical Engineering, Vol. 40, pp. 822-826, 2001.
[25]. H. J. Wang et al., “Phase-shifting moiré interferometry based on a liquid crystal phase modulator,” Optical Engineering, Vol. 44, P. 015602, 2005.
[26]. Y. Wang et al., “Photorefractive holographic interferometry for the measurement of object tilt and in-plane displacement,” Proc. SPIE, Vol. 4292, pp. 230-236, 2002.
[27]. A. S. Plotnikov et al., “Measurement of the displacements of points on the surface of a body by means of the Konus hologram interferometer,” Measurement Techniques, Vol. 54, No. 2, pp. 143-149, 2011.
[28]. R. Tripathi et al., “In-plane displacement using a photorefractive speckle correlator,” Optics Communications, Vol. 149, pp. 355-365, 1998.
[29]. J. Y. Lee et al., “Measurement of in-plane displacement by wavelength-modulated heterodyne speckle interferometry,” Applied Optics, Vol. 51, pp. 1095-1100, 2012.
[30]. J. A. Leendertz, “Interferometric displacement measurement on scattering surfaces utilizing speckle effect,” Journal of Physics E: Scientific Instruments, Vol. 3, No. 3, pp. 214–218, 1970.
[31]. R. Dandliker and J.-F. Willemin, “Measuring microvibrations by heterodyne speckle interferometry,” Optical Letter, Vol. 6, pp. 165-167, 1981.
[32]. P. Jacquot, “Speckle Interferometry: A Review of the Principal Method in Use for Experimental Mecfanics Applications,” Strain, Vol. 44, pp. 57-69, 2008.
[33]. P. R. Yoder Jr, E. R. Schlesinger and J. L. Chickvary, “Active annular-beam laser autocollimator system,” Applied Optics, Vol. 14, pp. 1890-1895, 1975.
[34]. D. Malacara and O. Harris, “Interferometric Measurement of Angles,” Applied Optics, Vol. 9, pp. 1630-1633, 1970.
[35]. P. Shi and E. Stijns, “Improving the linearity of the Michelson interferometric angular measurement by a parameter compensation method,” Applied Optics, Vol. 32, pp. 44-51, 1993.
[36]. C. H. Wu and Y. T. Chuang, “Roll angular displacement measurement system with microradian accuracy,” Sensors and Actuators A, Vol. 116, pp. 145-149, 2004.
[37]. P. S. Huang and J. Ni, “Angle measurement based on the internal-reflection effect and the use of right-angle prisms,” Applied Optics, Vol. 34, pp. 4976-4981, 1995.
[38]. W. Zhou and L. Cai, “Interferometer for small-angle measurement based on total internal reflection,” Applied Optics, Vol. 37, pp. 5957-5963, 1998.
[39]. G. Margheri, A. Mannoni and F. Quercioli, “High-resolution angular and displacement sensing based on the excitation of surface plasma waves,” Applied Optics, Vol. 36, pp. 4521-4525, 1997.
[40]. S. F. Wang, M. H. Chiu, C. W. Lai and R. S. Chang, “High-sensitivity small-angle sensor based on surface plasmon resonance technology and heterodyne interferometry,” Applied Optics, Vol. 45, pp. 6702-6707, 2006.
[41]. S. T. Lin, S. L. Yeh and Z. F. Lin, “Angular probe based on using Fabry-Perot etalon and scanning technique,” Optics Express, Vol. 18, pp. 1794-1800, 2010.
[42]. Y. Ishii, “Wavelength-Tunable Laser-Diode Interferometer,” Optical Review, Vol. 6, No. 4, pp. 273-283, 1999.
[43]. P. K. Rastogi, “Optical Measurement Technique and Applications,” Artech House, Boston. London, 1997.
[44]. 安毓英,曾小東,光學感測與測量,五南圖書出版公司,台北市,2004。
[45]. J. W. Goodman, “Introduction to Fourier Optics,” McGraw-Hill, New York, 1996.
[46]. M. C. Hutley, “Diffraction Gratings,” Academic Press Limited, London, 1982.
[47]. 丁均怡等,光學元件精密製造與檢測,財團法人國家實驗研究院儀器科技研究中心,新竹市,台灣,2007。
[48]. M. C. Hultey, “Diffraction Gratings,” Academic Press Limited, London, 1982.
[49]. K. Oka et al., “Real-time phase demodulator for optical heterodyne detection process,” Measurement Science and Technology, Vol. 2, pp. 106-110, 1991.
[50]. 林坤億,「波長調制外差散斑干涉術之研究」,國立中央大學光機電工程研究所碩士論文,桃園縣,台灣,2008。
[51]. Y. Ishii et al., “Phase-shifting fizeau interference microscope with a wavelength-tunable laser diode,” Optical Engineering, Vol. 42, pp. 60-67, 2003.
指導教授 李朱育(Ju-Yi Lee) 審核日期 2012-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明