參考文獻 |
Ch1
[1] L.J. Chen, “Silicide technology for integrated circuits,” Institute of Elec. Eng., London, (2004).
[2] T. Morimoto, T. Ohguro, H. S. Momose, T. Iinuma, I. Kunishima, K. Suguro, I. Katakabe, H. Nakajima, and M. Tsuchiaki, “Self-aligned nickel-mono-silicide technology for high-speed deep submicrometer logic CMOS ULSI,” IEEE Trans. Electron Devices, 42, 915 (1995).
[3] S. L. Zhang and M. Ostling, ”Metal silicides in CMOS technology: past, present and future trends,” Critical Reviews In Solid State and Materials Science, 28, 1 (2004).
[4] C. Lavoie, F. M. d’Heurle, and S. L. Zhang, in Handbook of semiconductor manufacturing technology, 2nd Edition, edited by Y. Nishi and R. Doering (Taylor & Francis CRC Press, 2007), Chapter 10.
[5] H. Iwai, T. Ohguro, and S. I. Ohmi, “NiSi silicide technology for scaled CMOS,” Microelectronics Eng., 60, 157 (2002).
[6] Properties of metal silicides, edited by K. Maex and M. Van. Rossum (Inspec, 1995).
[7] M. A. Nicolet and S. S. Lau, in chapter 6, “Formation and characterization of transition metal silicids,” VLSI electronics microstructure science, edited by N. G. Einspruch and G. B. Larrabee, Academic press, (1983).
[8] E. H. Rhoderick and R. H. William, “Metal-semiconductor contact,” in Monographs in electrical and electronic engineering, Oxford, U. K, Clarendon, (1988).
[9] F. M. d’Heurle, “Silicide interfaces in silicon technology,” J. Electron. Mater., 27, 1138 (1998).
[10] S. L. Zhang and U. Smith, “Self-aligned silicides for ohmic contacts in complementary metal-oxide-semiconductor technology: TiSi2, CoSi2, and NiSi,” J. Vac. Sci. Tchnol. A, 22, 1361 (2004).
[11] J. A. Kittl and Q.Z. Hong, “Self-aligned Ti and Co silicides for high performance sub-0.18 mm CMOS technologies”, Thin Solid Films, 320, 110 (1998).
[12] A. Lauwes, P .Besser, T. Gutt, A. Satta, M. de Potter, R. Lindsay, N. Roelandts, F. Loosen, S.Jin, H. Bender, M. Stucchi, C. Vrancken, B. Deweerdt, and K. Maex, “Comparative study of Ni-silicide and Co-silicide for sub 0.25-μm technologies,” Microelectronic Engineering, 50, 103 (2000).
[13] S. S. Lau, J. W Mayer, and K. N. Tu, “Interactions in the Co/Si thin-film system. I. Kinetics,” J. Appl. Phys., 49(7), 4005 (1978).
[14] G. J. van Gurp, W. F. van der Weg, and D. Sigurd, “Interactions in the Co/Si thin-film system. II. Diffusion-marker experiments,” J. Appl. Phys. 49(7), 4011 (1978).
[15] F. M. d’Heurle and C. S. Petersson, “Formation of thin films of CoSi2: Nucleation and diffusion mechanisms,” Thin Solid Films, 128, 283 (1985).
[16] A. R. Appelbaum, V. Knoell, and S. P. Murarka, “Study of cobalt-disilicide formation from cobalt monosilicide,” J. Appl. Phys., 57(6), 1880 (1985).
[17] A. H. van Ommen, C. W. T. Bulle-Lieuwma, and C. Langereis, “Properties of CoSi2 formed on (001) Si,” J. Appl. Phys., 64(5), 2706 (1988).
[18] G. J. V. Gurp and C. Langereis, “Cobalt silicide layers on Si. I. structure and growth,” J. Appl. Phys., 46, 4301 (1975).
[19] D. Ma, D. Z. Chi, M. E. Loomans, W. D. Wang, A. S. W. Wong, and S. J. Chua, “Kinetics of NiSi-to-NiSi2 transformation and morphological evolution in nickel silicide thin films on Si(001) ,” Acta Mater., 54, 4905 (2006).
[20] J. P. Gambino and E. G. Colgan, “Silicides and ohmic contacts,” Mater. Chem. Phys., 52, 99 (1998).
[21] C. C. Wang, H. H. Lin, and M. C. Chen, “Thermal stability of Cu/NiSi-contacted p+n shallow junction,” J. J. Appl. Physi., 43, 5997 (2004).
[22] A. Lauwers, J. A. Kittl, M. J. H. V. Dal, O. Chamirian, M. A. Pawlak, M. D. Potter, R. Lindsay, T. Raymakers, X. Pages, B. Mebarki, T. Mandrekar, and K. Maex, “Ni based silicides for 45 nm CMOS and beyond,” Mater. Sci. Eng. B, 114, 29 (2004).
[23] H. Iwai, T. Ohguro, and S. I. Ohmi, “NiSi salicide technology for scaled CMOS,” Microelectronic Engineering, 60, 157 (2002).
[24] D. Ma, D. Z. Chi, M. E. Loomans, W. D. Wang, A. S. W. Wong, and S. J. Chua, “Kinetics of NiSi-to-NiSi2 transformation and morphological evolution in nickel silicide thin films on Si(001) ,” Acta Mater., 54, 4905 (2006).
[25] F. F. Zhao, J. Z. Zheng, Z. X. Shen, T. Osipowicz, W. Z. Ga, and L. H. Chan, “Thermal stability study of NiSi and NiSi2 thin films,” Microelectron. Eng., 71, 104 (2004).
[26] D. Z. Chi, R. T. P. Lee, and S. J. Chua, “Addressing materials and process-integration issues of NiSi silicide process using impurity engineering,” IEEE, 113 (2004).
[27] D. Mangelinck, J. Y. Dai, J. S. Pan, and S. K. Lahiri, “Enhancement of thermal stability of NiSi films on (100)Si and (111)Si by Pt addition,” Appl. Phys. Lett., 75, 1736 (1999).
[28] P. S. Lee, K. L. Pey, D. Mangelinck, J. Ding, D. Z. Chi, and L. Chan, “New salicidation technology with Ni(Pt) alloy for MOSFETs,” IEEE Electron Device Lett., 22, 568 (2001).
[29] C. Detavernier and C. Lavoie, ”Influence of Pt Addition on the Texture of NiSi on Si(001),” Appl. Phys. Lett., 84, 3549 (2004).
[30] P. S. Lee, K. L. Pey, D. Mangelinck, D. Z. Chi, and T. Osipowicz, “On the morphological changes of Ni- and Ni(Pt)-Silicides,” J Electrochem. Soc., 152, G305 (2005).
[31] D. Lee, K. Do, D. H. Ko, S. Choi, J. H. Ku, and C. W. Yang, “The effects of Ta on the formation of Ni-silicide in Ni0.95xTa0.05x/Si systems,” Mater. Sci. Eng. B, B114, 241 (2004).
[32] R. Wei and C. Dongzhi, ” Formation mechanism of Ni(Pt,Ti) ternary alloy ailicidation,” J. Electrochem. Soc., 155, H117 (2008).
[33] Y. Setiawan, P. S. Lee, C. W. Tan, and K. L. Pey, “Effect of Ti alloying in nickel silicide formation,” Thin Solid Films, 504, 153 (2006).
[34] Y. Setiawan, P. S. Lee, C. W. Tan, K. L. Pey, X. C. Wang, and G. C. Lim,” Laser-induced Ni(Ti)silicide formation,” Appl. Phys. Lett., 88, 113108 (2006).
[35] C. J. Tsai, P. L. Cheng, and K. H. Yu, “Stress evolution of Ni/Pd/Si reaction system under isochronal annealing,” Thin Solid Films, 365(1), 72 (2000).
[36] M. Sinha, E. F. Chor, and Y. C. Yeo, “Tuning the schottky barrier height of nickel silicide on p-silicon by aluminum segregation,” Appl. Phys. Lett., 92, 222114 (2008).
[37] F. Allenstein, L. Budzinski, D. Hirsch, A. Mogilatenko, G. Beddies, R. Gro‥ tzschel, and H. J. Hinneberg, “Influence of Al on the growth of NiSi2 on Si(001),” Microelectron. Eng., 82, 474 (2005).
[38] O. Nakatsuka, K. Okubo, A. Sakai, M. Ogawa, Y. Yasuda, and S. Zaima, ”Improvement in NiSi/Si contact properties with C-implantation,” Microelectronic Eng., 82, 479 (2005).
[39] S. Zaima, O. Nakatsuka, A. Sakai, J. Murota, and Y. Yasuda, “Interfacial reaction and electrical properties in Ni/Si and Ni/SiGe(C) contacts,” Appl. Surf. Sci., 224, 215 (2004).
[40] L. W. Cheng, S. L. Cheng, and L. J. Chen, “Formation of Ni silicides on (001) Si with a thin interposing Pt layer,” J. Vac. Sci. Technol. A, 18, 1176 (2000).
[41] O. Nakatsuka, K. Okubo, Y. Tsuchiya, A. Sakai, S. Zaima, and Y. Yasuda, “Low-temperature formation of epitaxial NiSi2 layers with solid-phase reaction in Ni/Ti/Si(001) systems,” J. J. Appl. Phys., 44, 2945 (2005).
[42] U. Falke, F. Fenske, S. Schulze, and M. Hietschold, “XTEM studies of nickel silicide growth on Si(100) using a Ni/Ti bilayer system,” Phys. Stat. Sol. (a), 162, 615 (1997).
[43] W. Huang, Y. L. Min, G. P. Ru, Y. L. Jiang, X. P. Qu, and B. Z. Li, “Effect of erbium interlayer on nickel silicide formation on Si(100),” Scr. Mater., 254, 2120 (2008).
[44] C. H. Olk, O. P. Karpenko, and S. M. Yalisove, “Growth of epitaxial β–FeSi2 thin films by pulsed laser deposition on silicon (111),” Journal of Materials Research, 2733 (1994).
[45] D. Mangelinck, P. Gas, J. M. Gay, B. Pichaud, and O. Thomas, “Effect of Co, Pt, and Au additions on the stability and epitaxy of NiSi2 films on (111) Si,” J. Appl. Phys., 84, 2583 (1998).
[46] R. Pretorius, C. C. Theron, A. Vantomme, and J. W. Mayer, “Compound phase formation in thin film structures,” Critical Reviews in Solid State and Material Science, 24, 1 (1999).
[47] K. Maex and M.V. Rossum, “Properties of Metal Silicides,” Inspec, London, (1995).
[48] L. J. Chen, “Silicide technology for integrated circuits,” Institute of Elec. Eng., London, (2004).
[49] R. T. Tung, J. M. Gibson, and J. M. Poate, “Formation of ultrathin single-crystal silicide films on Si: surface and interfacial stabilization of Si-NiSi2 epitaxial structures,” Phys. Rev. Lett., 50, 429 (1983).
[50] R. T. Tung, J. M. Gibson, and J. M. Poate, “Growth of single crystal epitaxial silicides on silicon by the use of template layers,” Appl. Phys. Lett., 42, 888 (1983).
[51] Y. J. Chang and J. L. Erskine, “Diffusion layers and the schottky-barrier height in nickel silicide-silicon interfaces,” Phys. Rev. B, 28, 5766 (1983).
[52] J. M. Gibson, J. L. Batstone, F. C. Unterwald, and R. T. Tung, “Origin of A- or B-type NiSi2 determined by in situ transmission electron microscopy and diffraction during growth,” Phys. Rev. Lett., 60, 1158 (1988).
[53] J. Luo, Z. Qiu, C. Zha, Z. Zhang, D. Wu, J. Lu, J. Akerman, L. Hultman, M.Ostling, and S. L. Zhang, “Surface-energy triggered phase formation and epitaxy in nanometer-thick Ni1−xPtx silicide films,” Appl. Phys. Lett., 96, 031911 (2010).
[54] Z. Zhang, S. L. Zhang, B. Yang, Y. Zhu, S. M. Rossnagel, S. Gaudet, A. J. Kellock, J. Jordan-Sweet, and C. Lavoie, “Morphological stability and specific resistivity of sub-10 nm silicide films of Ni1−xPtx on Si substrate,” Appl. Phys. Lett., 96, 071915 (2010).
[55] Y. W. Ok, C. J. Choi, and T. Y. Seong, “Effect of a Mo interlayer on the electrical and structural properties of nickel silicides,” J. Electrochem. Soc., 150, G385 (2003).
[56] S. L. Chiu, Y. C. Chu, C. J. Tsai, H. Y. Lee, “Effects of Ti Interlayer on Ni/Si Reaction Systems,” J. Electrochem. Soc., 151, G452 (2004).
[57] A. Lauwers, J. A. Kittl, M. J. H. V. Dal, O. Chamirian, M. A. Pawlak, M. D. Potter, R. Lindsay, T. Raymakers, X. Pages, B. Mebarki, T. Mandrekar, and K. Maex, “Ni based silicides for 45 nm CMOS and beyond,” Mater. Sci. Eng. B, 114, 29 (2004).
[58] S. B. Mi, C. L. Jia, Q. T. Zhao, S. Mantl, and K. Urban, “NiSi2/Si interface chemistry and epitaxial growth mode,” Acta Mater., 57, 232 (2009).
[59] K. C. R. Chiu, J. M. Poate, J. E. Rowe, T. T. Sheng, and A. G. Cullis, “Interface and surface structure of epitaxial NiSi2 films,” Appl. Phys. Lett., 38, 988 (1981).
[60] N. W. Cheung and J. W. Mayer, “Lattice-location experiment of the Ni-Si interface by thin-crystal channeling of Helium ions,” Phys. Rev. Lett., 46, 671 (1981).
[61] J. M. Gibson and J. L. Batstone, “In-situ transmission electron microscopy of NiSi2 formation by molecular beam epitaxy,” Surf. Sci., 208, 317 (1989).
[62] D. P. Adams, S. M. Yalisove, and D. J. Eaglesham, “Interfacial and surface energetics of CoSi2,” J. Appl. Phys., 76, 5190 (1994).
Ch3
[1] S. L. Zhang, “Self-aligned silicides for ohmic contacts in complementary metal–oxide–semiconductor technology: TiSi2, CoSi2, and NiSi,” J. Vac. Sci. Technol. A, 22, 1361 (2004).
[2] C. C. Wang, H. H. Lin, and M. C. Chen, “Thermal stability of Cu/NiSi-contacted p+n shallow junction”, J. J. Appl. Phys., 43, 5997 (2004).
[3] A. Lauwers, J. A. Kittl, M. J. H. V. Dal, O. Chamirian, M. A. Pawlak, M. D Potter, R. Lindsay, T. Raymakers, X. Pages, B. Mebarki, T. Mandrekar, and K. Maex, “Ni based silicides for 45 nm CMOS and beyond,” Mater. Sci. Eng. B, 114, 29 (2004).
[4] L. J. Chen, “Silicide technology for integrated circuits”, The institution of electrical engineer, London, (2004).
[5] O. Chamirian, J. A. Kittl, A. Lauwers, O. Richard, M. van Dal, and K. Maex, “Thickness scaling issues of Ni silicide,” Microelectron. Eng., 70, 201 (2003).
[6] F. F. Zhao, J. Z. Zheng, Z. X. Shen, T. Osipowicz, W. Z. Gao, and L. H. Chan, “Thermal stability study of NiSi and NiSi2 thin films,” Microelectron. Eng., 71, 104 (2004).
[7] D. Deduytsche, C. Detaverier, R. L. Van Meirhaeghe, and C. Lavoie, “High temperature degradation of NiSi films: Agglomeration versus NiSi2 nucleation,” J. Appl. Phys., 98, 033526 (2005).
[8] J. Seger, P. E. Hellstrom, J. Lu, B. G. Malm, M. von Haartman, M. Ostling, and S. L. Zhang, “Lateral encroachment of Ni-silicides in the source/drain regions on ultrathin silicon-on-insulator,” Appl. Phys. Lett, 86, 253507 (2005).
[9] J. Luo, Z. J. Qiu, Z. Zhang, M. Ostling, and S. L. Zhang, “Interaction of NiSi with dopants for metallic source/drain applications,” J. Vac. Sci.Technol. B, 28, 1 (2010).
[10] B. Imbert, R. Pantel, S. Zoll, M. Gregoire, R. Beneyton, S. D. Medico, and O. Thomas, “Nickel silicide encroachment formation and characterization,” Microelectron. Eng., 87, 245 (2010).
[11] O. Nakatsuka, K. Okubo, Y. Tsuchiya, A. Sakai, S. Zaima, and Y. Yasuda, “Low-temperature formation of epitaxial NiSi2 layers with solid-phase reaction in Ni/Ti/Si(001) systems,” J. J. Appl. Phys., 44, 2945 (2005).
[12] O. Nakatsuka, A. Suzuki, S. Akimoto, A. Sakai, M. Ogawa, and S. Zaima, “Dependence of electrical characteristics on interfacial structure of epitaxial NiSi2/Si schottky contacts formed from Ni/Ti/Si system,” Jpn. J. Appl. Phys., 47, 2402 (2008).
[13] D. Z. Chi, R. T. P. Lee, and S. J. Chua, “Addressing materials and process-integration issues of NiSi silicide process using impurity engineering,” IEEE, 113 (2004).
[14] D. Mangelinck, J. Y. Dai, J. S. Pan, and S. K. Lahiri, “Enhancement of thermal stability of NiSi films on (100)Si and (111)Si by Pt addition,” Appl. Phys. Lett., 75, 1736 (1999).
[15] P. S. Lee, K. L. Pey, D. Mangelinck, J. Ding, D. Z. Chi, and L. Chan, “New salicidation technology with Ni(Pt) alloy for MOSFETs,” IEEE Electron Device Lett., 22, 568 (2001).
[16] P. S. Lee, K. L. Pey, D. Mangelinck, D. Z. Chi, and T. Osipowicz, “On the morphological changes of Ni- and Ni(Pt)-Silicides,” J Electrochem. Soc., 152, G305 (2005).
[17] J. Demeulemeester, D. Smeets, C. V. B℃kstael, C. Detavernier, C. M. Comrie, N. P. Barradas, A. Vieira, and A. Vantomme,” Pt redistribution during Ni(Pt) silicide formation,” Appl. Phys. Lett., 93, 261912 (2008).
[18] Y. Setiawan, P. S. Lee, C. W. Tan, and K. L. Pey, “Effect of Ti alloying in nickel silicide formation,” Thin Solid Films, 504, 153 (2006).
[19] Y. Setiawan, P. S. Lee, C.W. Tan, K.L. Pey, X. C. Wang, and G. C. Lim, ” Laser-induced Ni(Ti)silicide formation,” Appl. Phys. Lett., 88, 113108 (2006).
[20] R. T. P. Lee, T. Y. Liow, K. M. Tan, A. E. J. Lim, H. S. Wong, P. C. Lim, Doreen M.Y. Lai, G. Q. Lo, C. H. Tung, G. Samudra, D. Z. Chi, and Y. C. Yeo, “Novel nickel-alloy silicides for source/drain contact resistance reduction in N-channel multiple-gate transistors with sub-35nm gate length,” IEDMS, (2006).
[21] V. I. Trofimov, N. M. Sushkova, and J.I. Kim, “Phase and structure transformations in the titanium interlayer during the nickel silicidation on Si(100) substrate,” Scr. Mater., 601, 4423 (2007).
[22] R. Wei and C. Dongzhi, “Formation mechanism of Ni(Pt,Ti) ternary alloy ailicidation,” J. Electrochem. Soc., 155, H117 (2008).
[23] F. Allenstein, L. Budzinski, D. Hirsch, A. Mogilatenko, G. Beddies, R. Gro‥ tzschel, and H. J. Hinneberg, “Influence of Al on the growth of NiSi2 on Si(001),” Microelectron. Eng., 82, 474 (2005).
[24] K. Tsutsui, T. Shiozawa, K. Nagahiro, Y. Ohishi, K. Kakushima, P. Ahmet, N. Urushihara, M. Suzuki, and H. Iwai, “Improvement of thermal stability of Ni silicide on N+–Si by direct deposition of group III element (Al, B) thin film at Ni/Si interface,” Microelectron. Eng., 85, 2000 (2008).
[25] L. J. Chen, J. W. Mayer, K. N. Tu, and T. T. Sheng, “Lattice imaging of silicide-silicon interfaces,” Thin Solid Films, 93, 91 (1982).
[26] L. J. Chen and K. N. Tu, “Epitaxial growth of transition-metal silicides on silicon,” Mater. Sci. Rep., 6, 53 (1991).
[27] D. Mangelinck, P. Gas, J. M. Gay, B. Pichaud, and O. Thomas, “Effect of Co, Pt, and Au additions on the stability and epitaxy of NiSi2 films on (111) Si,” J. Appl. Phys., 84, 2583 (1998).
[28] F. d’Heurle, C. Petersson, L. Stolt, and B. Strizker, “Diffusion in intermetallic compounds with the CaF2 structure: A marker study of the formation of NiSi2 thin films,” J. Appl. Phys., 53, 5678 (1982).
[29] J. E. E. Baglin, H. A. Atwater, D. Gupta, and F. d’Heurle, “Radioactive Ni∗ tracer study of the nickel silicide growth mechanism,” Thin Solid Films, 93, 255 (1982).
[30] H. Iwai, T. Ohguro, and S. I. Ohmi, “NiSi salicide technology for scaled CMOS,” Microelectronic Engineering, 60, 157 (2002).
[31] D. Ma, D. Z. Chi, M. E. Loomans, W. D. Wang, A. S. W. Wong, and S. J. Chua, “Kinetics of NiSi-to-NiSi2 transformation and morphological evolution in nickel silicide thin films on Si(001),” Acta Mater., 54, 4905 (2006).
[32] International Technology Roadmap for Semiconductors, 2011 Update.
[33] J. Luo, Z. Qiu, C. Zha, Z. Zhang, D. Wu, J. Lu, J. Akerman, L. Hultman, M.Ostling, and S. L. Zhang, “Surface-energy triggered phase formation and epitaxy in nanometer-thick Ni1−xPtx silicide films,” Appl. Phys. Lett., 96, 031911 (2010).
[34] Z. Zhang, S. L. Zhang, B. Yang, Y. Zhu, S. M. Rossnagel, S. Gaudet, A. J. Kell℃k, J. Jordan-Sweet, and C. Lavoie, “Morphological stability and specific resistivity of sub-10 nm silicide films of Ni1−xPtx on Si substrate,” Appl. Phys. Lett., 96, 071915 (2010).
[35] R. T. Tung, J. M. Gibson and J. M. Poate, “Growth of single crystal epitaxial silicides on silicon by the use of template layers,” Appl. Phys. Letters, 42, 888 (1983).
[36] H. von Kanel, T. Graf, J. Henz, M. Ospelt and P. Wachter, “NiSi2 layers grown on Si (111) by MBE and SPE,” J. Crystal Growth, 81, 470 (1987).
[37] R. T. Tung and F. Schrey, “Growth of epitaxial NiSi2 on Si(111) at room temperature,” Appl. Phys. Letters, 55, 256 (1989).
[38] J. P. Sullivan, R. T. Tung and F. Schrey, “Control of interfacial morphology: NiSi2/Si(100),” J. Appl. Phys., 72, 478 (1992).
[39] P. L. Tam and L. Nyborg, “Sputter deposition and XPS analysis of nickel silicide thin films,” Surface and Coatings Technology, 203, 2886 (2009).
[40] Y. Cao, L. Nyborg, and U. Jelvestam, “XPS calibration study of thin-film nickel silicides,” Surf. Interface Anal., 41, 471 (2009).
[41] J. Shi, D. Kojima, and M. Hashimoto, “The interaction between platinum films and silicon substrates: Effects of substrate bias during sputtering deposition,” J. Appl. Phys., 88, 1679 (2000).
[42] Liu Shuang, Zhong Zhiyong, Ning Yonggong, Chen Ai, Zhang Huaiwu, and Yang Jiade, “Formation of ultra-thin PtSi film by vacuum annealing,” Vacuum, 65, 133 (2002).
[43] Handbook of X-ray Photoelectron Spectroscopy. Perkin-Elmer, Eden Prairie. MN, (1978).
[44] Vladimir I. Trofimov, Natalya M. Sushkova, and Jong-II Kim,“Phase and structure transformations in the titanium interlayer during the nickel silicidation on Si(1 0 0) substrate,” Surface Science, 601, 4423 (2007).
[45] A. Zangwill, Physics at Surfaces Cambridge University Press, London, (1988).
[46] F. F. Zhao, J. Z. Zheng, Z. X. Shen, T. Osipowicz, W. Z. Gao, and L. H. Chan, “Thermal Stability Study of NiSi and NiSi2 Thin Films,” Microelectron. Eng., 71, 104 (2004).
[47] J. P. Sullivan, R. t. Tung, and F. Schrey, AT&T Bell Laboratories, Murray Hill, New Jersey, “Control of interfacial morphology: NiSi2/Si(100),” J.Appl. Phys., 72, 07974 (1992).
[48] R. Pretorius, C. C. Theron, A. Vantomme, and J. W. Mayer, “Compound phase formation in thin film structures,” Critical Reviews in Solid State and Material Science, 24, 1 (1999).
[49] Y. W. Ok, C. J. Choi, and T. Y. Seong, “Effect of a Mo interlayer on the electrical and structural properties of nickel silicides”, J. Electrochem. Soc., 150, G385 (2003).
[50] S. L. Chiu, Y. C. Chu, C. J. Tsai, and H. Y. Lee, “Effects of Ti Interlayer on Ni/Si Reaction Systems,” J. Electrochem. Soc., 151, G452 (2004).
[51] A. Lauwers, J. A. Kittl, M. J. H. V. Dal, O. Chamirian, M. A. Pawlak, M. D. Potter, R. Lindsay, T. Raymakers, X. Pages, B. Mebarki, T. Mandrekar, and K. Maex, “Ni based silicides for 45 nm CMOS and beyond,” Mater. Sci. Eng. B, 114, 29 (2004).
[52] R. T. Tung, J. M. Gibson, and J. M. Poate, “Formation of ultrathin single-crystal silicide films on Si: surface and interfacial stabilization of Si-NiSi2 epitaxial structures,” Phys. Rev. Lett., 50, 429 (1983).
[53] R. T. Tung, J. M. Gibson, and J. M. Poate, “Growth of single crystal epitaxial silicides on silicon by the use of template layers,” Appl. Phys. Lett., 42, 888 (1983).
[54] Z. Zhang, S. L. Zhang, B. Yang, Y. Zhu, S. M. Rossnagel, S. Gaudet, A. J. Kellock, J. Jordan-Sweet, and C. Lavoie, “Morphological stability and specific resistivity of sub-10 nm silicide films of Ni1−xPtx on Si substrate,” Appl. Phys. Lett., 96, 071915 (2010).
Ch4
[1] D. X. Xu, S. R. Dasa, C. J. Peters, L. E. Erickson, “Material aspects of nickel silicide for ULSI applications,” Thin Solid Films, 326, 143 (1998).
[2] C. C. Wang, H. H. Lin, and M. C. Chen, “Thermal stability of Cu/NiSi-contacted p+n shallow junction,” J. J. Appl. Phys., 43, 5997 (2004).
[3] A. Lauwers, J. A. Kittl, M. J. H. V. Dal, O. Chamirian, M. A. Pawlak, M. D Potter, R. Lindsay, T. Raymakers, X. Pages, B. Mebarki, T. Mandrekar, and K. Maex, “Ni based silicides for 45 nm CMOS and beyond,” Mater. Sci. Eng. B, 114, 29 (2004).
[4] L. J. Chen, “Silicide technology for integrated circuits,” The Institution of Electrical Engineer, London, (2004).
[5] L. J. Chen, J. W. Mayer, K. N. Tu and T. T. Sheng, “Lattice imaging of silicide-silicon interfaces,” Thin Solid Films 93, 91 (1982).
[6] L. J. Chen and K. N. Tu, “Epitaxial growth of transition-metal silicides on silicon,” Mater. Sci. Rep., 6, 53 (1991).
[7] J. P. Sullivan, R. T. Tung and F. Schrey, “Control of interfacial morphology: NiSi2/Si(100),” J. Appl. Phys., 72, 478 (1992).
[8] D. Mangelinck, P. Gas, J. M. Gay, B. Pichaud, O. Thomas, “Effect of Co, Pt, and Au additions on the stability and epitaxy of NiSi2 films on (111) Si,” J. Appl. Phys., 84, 5, 2583 (1998).
[9] F. d’Heurle, C. Petersson, L. Stolt, and B. Strizker, “Diffusion in intermetallic compounds with the CaF2 structure: A marker study of the formation of NiSi2 thin films,” J. Appl. Phys., 53, 5678 (1982).
[10] J. E. E. Baglin, H. A. Atwater, D. Gupta, and F. d’Heurle, “Radioactive Ni∗ tracer study of the nickel silicide growth mechanism,” Thin Solid Films, 93, 255 (1982).
[11] V. Teodorescu, L. Nistor, H. Bender, A. Steegen, A. Lauwers, K. Maex, and J. V. Landuyt, “In situ transmission electron microscopy study of Ni silicide phases formed on (001) Si active lines,” J. Appl. Phys., 90, 167 (2001).
[12] H. Iwai, T. Ohguro, and S. I. Ohmi, “NiSi salicide technology for scaled CMOS,” Microelectronic Engineering, 60, 157 (2002).
[13] D. Ma, D. Z. Chi, M. E. Loomans, W. D. Wang, A. S. W. Wong, and S. J. Chua, “Kinetics of NiSi-to-NiSi2 transformation and morphological evolution in nickel silicide thin films on Si(001),” Acta Mater., 54, 4905 (2006).
[14] K. Tsutsui, R. Xiang, K. Nagahiro, T. Shiozawa, P. Ahmet, Y. Okuno, M. Matsumoto, M. Kubota, K. Kakushima, and H. Iwai, “Analysis of irregular increase in sheet resistance of Ni silicides on transition from NiSi to NiSi2,” Microelectron. Eng., 85, 315 (2008).
[15] C. Detavernier, X. P. Qu, R. L. Van Meirhaeghe, B. Z. Li, and K. Maex, “Mixing entropy and the nucleation of silicides: Ni–Pd–Si and Co–Mn–Si ternary systems,” J. Mater. Res., 18, 1668 (2003).
[16] K.W. Richter, K. Hiebl, “NiAl1.74Si0.26 and NiSi1.83Ga0.17: Two materials with perfect lattice match to Si,” Appl. Phys. Lett., 83, 497 (2003).
[17] K. L. Pey, P. S. Lee, and D. Mangelinck, “Ni(Pt) alloy silicidation on (100) Si and poly-silicon lines,” Thin Solid Films, 462, 137 (2004).
[18] X. P. Qu, Y. L. Jiang, G. P. Ru, F. Lu, B. Z. Li, C. Detavernier, and R.L. Van Meirhaeghe, “Thermal stability, phase and interface uniformity of Ni-silicide formed by Ni–Si solid-state reaction,” Thin Solid Films, 462, 146 (2004).
[19] M. Sinha, E. F. Chor, and Y. C. Yeo, “Tuning the schottky barrier height of nickel silicide on p-silicon by aluminum segregation,” Appl. Phys. Lett., 92, 222114 (2008).
[20] A. T. Y. Koh, R. T. P. Lee, A. E. J. Lim, D. M.-Y. Lai, D. Z. Chi, K. M. Hoe, N. Balasubramanian, G. S. Samudra, and Y. C. Yeo, “Nickel-aluminum alloy silicides with high aluminum content for contact resistance reduction and integration in n-channel field-effect transistors,” J. Electrochem. Soc., 155, H151 (2008).
[21] R. T. P. Lee, T. Y. Liow, K. M. Tan, A. E. J. Lim, A. T. Y. Koh, G. Q. Lo, G. S. Samudra, D. Z. Chi, and Y. C. Yeo, “Achieving conduction band-edge Schottky barrier height for arsenic-segregated nickel aluminide disilicide and implementation in FinFETs with ultra-narrow Fin widths,” IEEE Electron Device Lett., 29, 382 (2008).
[22] R. T. P. Lee, T. Y. Liow, K. M. Tan, A. E. J. Lim, H. S. Wong, P. C. Lim, D. M. Y. Lai, G. Q. Lo, C. H. Tung, G. Samudra, D. Z. Chi, and Y. C. Yeo, “Novel nickel-alloy silicides for source/drain contact resistance reduction in n-channel multiple-gate transistors with sub-35nm gate length,” Tech. Dig. Int. Electron Devices Meet., 851 (2006).
Ch6
[1] M. Chan, F. Assaderaghi, S.A. Parke, C. Hu, and P.K. Ko, “Recessed-channel structure for fabricating ultrathin SOI MOSFET with low series resistance,” IEEE Trans. Electron Devices, 15, 22 (1994).
[2] E. Alptekin and M.C. Ozturk, “Schottky barrier height of nickel silicide contacts formed on Si1−xCx epitaxial layers,” IEEE Electron Devices Lett., 30, 1320 (2009).
|