博碩士論文 994203007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:18.117.158.10
姓名 陳宗誠(Zong-cheng Chen)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 內容關聯廣告利用廣告標籤
(Contextual Advertising using Ad Tag Relevance)
相關論文
★ 零售業商業智慧之探討★ 有線電話通話異常偵測系統之建置
★ 資料探勘技術運用於在學成績與學測成果分析 -以高職餐飲管理科為例★ 利用資料採礦技術提昇財富管理效益 -以個案銀行為主
★ 晶圓製造良率模式之評比與分析-以國內某DRAM廠為例★ 商業智慧分析運用於學生成績之研究
★ 運用資料探勘技術建構國小高年級學生學業成就之預測模式★ 應用資料探勘技術建立機車貸款風險評估模式之研究-以A公司為例
★ 績效指標評估研究應用於提升研發設計品質保證★ 基於文字履歷及人格特質應用機械學習改善錄用品質
★ 以關係基因演算法為基礎之一般性架構解決包含限制處理之集合切割問題★ 關聯式資料庫之廣義知識探勘
★ 考量屬性值取得延遲的決策樹建構★ 從序列資料中找尋偏好圖的方法 - 應用於群體排名問題
★ 利用分割式分群演算法找共識群解群體決策問題★ 以新奇的方法有序共識群應用於群體決策問題
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來,網路廣告已成為最常用使用的市場通路。「搜尋贊助廣告」和「內容關聯廣告」是兩種最主要網路廣告類型。我們的研究主要針對「內容關聯廣告」類型。根據之前的文獻指出,「內容關聯廣告」面臨著是同義詞、多媒體內容、廣告中的文字數量有限,和顯示特性等四大問題。我們主要的研究目的是想要去提出一個新的「內容關聯廣告」的工具用來媒合廣告與網頁。我們提出的計畫工具主要的優點在於可以避免多媒體內容和文字數量有限問題。
  在文獻上,目前用來配對廣告和網頁的現有方法主要有兩種類別。分別為向量空間模式和關鍵詞模式,但它們都各自有不同的缺點。像是向量空間模式的方法,它難以建立成文字向量對於一些非文字的廣告,因為這些廣告是多媒體型態而且擁有有限的文字。而對於關鍵詞模式,會造成大部分網頁的文字沒有被使用與利用,當我們如果只有單純只選擇使用幾個關鍵詞而非使用全部完整文字向量來表達一個網頁。
  因廣告商對於他們的廣告相當了解,我們研究在這樣的假設之下,可藉由廣告商提供相關的關鍵詞標籤加在多媒體廣告上,把這樣的假設建立在我們提出推薦廣告給網頁的方法之上。我們結合了兩種傳統模式,將網頁文字轉換成文字向量,讓廣告商在多媒體廣告加上關鍵詞標籤。然後提供一個機制去計算文字向量和關鍵詞標籤的文字相似度。執行實驗與評估後,透過展示出我們方法的成果,發現比傳統資訊檢索工具好。
摘要(英) In recent years, web advertising has become one of the most commonly-used marketing channels. Sponsored search and contextual advertising are the two main categories of text-based web advertising. Our research focuses on the contextual advertising. As indicated in the literature, the contextual advertising suffers from the four major problems, including synonyms, multimedia content, limited amount of text in advertisement, and display characteristics. In this work, our aim is to propose a new contextual advertising method to match ads and web pages. The advantages of our proposed method are that it can avoid the problems caused by multimedia content and limited amount of text problems.
  In the literature, the methods to match ads and web pages can be categorized into two main categories, which are vector space model and keyword based model. Both approaches have their own different weaknesses. For vector space model approach, it is difficult to build vectors for non-text-based ads because these ads include mainly multimedia material and have only very limited text; for keyword based model approach, most information in the web page is not used since we only select few keywords rather than a full vector to represent a web page.
  Since advertisers understand their ads well, this work assumes that the multimedia ads would be associated with keyword tags provided by their advertisers, based on which we propose a new approach to recommend ads to web pages. In our approach, we combine the two traditional approaches and represent a web page by a term vector and represent an ad by the keyword tags proposed by its advertiser. Then, a matching mechanism is developed to compute the similarities between the vectors and keywords tags. An experiment and evaluation are carried out to demonstrate the performance of the proposed method. The results show that it performs better than traditional information-retrieval methods.
關鍵字(中) ★ 推薦
★ 多媒體廣告
★ 資料探勘
★ 標籤
★ 內容關聯廣告
關鍵字(英) ★ tag
★ contextual advertising
★ recommend
★ data mining
★ multimedia ad
論文目次 Abstract  i
摘要  ii
致謝  iii
Contents  iv
List of Figures  vi
List of Tables  vii
Chapter 1 Introduction  1
1.1 Background of Web advertising  1
1.2 Contextual Advertising problem  2
1.3 Existing Approach  3
1.4 Motivation  4
1.5 Our Approach  4
Chapter 2 Related Works  6
2.1 Advertising  6
2.2 Sponsored Search  6
2.3 Contextual Advertising  7
2.4 Contextual Advertising problem  7
2.5 Advertising Pricing  8
2.6 Existing Approach  8
2.7 Summarization  10
Chapter 3 Research Design  11
3.1 Ad tags adding phase  11
3.2 Vector transforming phase  12
3.2.1 Preprocessing steps in Vector transforming phase  12
3.2.2 Feature Selection  14
3.3 Similarity matching phase  15
3.3.1 Step 1. Term of Ad Vector transforming  17
3.3.2 Step 2. Ad Vector aggregation  19
3.3.3 Step 3. Similarity between web page and ad  19
3.4 The Recommend Tags Method  20
Chapter 4 Experiments  23
4.1 Experiment 1 setting  23
4.2 Experiment 2 setting  25
4.3 Experiment 1 result  28
4.4 Experiment 2 result  38
4.5 Experiments Summary  44
Chapter 5 Conclusions and Future Works  46
Reference  47
參考文獻 [1] Mu, E. and Galletta, D.F., 2007, “The Effects of the Meaningfulness of Salient Brand and Product-related Text and Graphics on Web site Recognition,” Journal of Electronic Commerce Research, Vol.8, No.2, pp. 115-127
[2] Anagnostopoulous, A., Broder, A. Z., Gabrilovich, E., Josifovski, V.,and Riedei, L., 2007, “Just-in-time contexual advertising,” In Proceedings of the 16th international conference on information and knowledge management, pp. 331–340
[3] Broder, A., Fontoura, M., Josifovski, V., and Riedel, L., 2007, “A semantic approach to contextual advertising,” In Proceedings of the 30th International conference on Research and Development in Information Retrieval, pp. 559–566
[4] Suleman khan, Qazi Mudassar Ilyas, and Waqas Anwar., 2009, “Contextual advertising using keyword extraction through collocation,” In Proceedings of FIT’’, pp. 69-69
[5] Ribeiro-Neto, B., Cristo, M., Golgher, P. and de Moura, E., 2005, "Impedance Coupling in Content-Targeted Advertising," Proceedings of the 28th annual international ACM SIGIR
[6] IAB, “Internet Advertising Revenue Report 2011,” available online at http://www.iab.net/media/file/IAB-HY-2011-Report-Final.pdf
[7] Du Plessis, E., 2005, “The Advertised Mind. Millward Brown”
[8] EC2, “Internet Advertising History,” from the University of Southern California’s EC2 Digital Commerce Center. 2001, available online at http://www.ec2.edu/dccenter/archives/ia/history.html
[9] Fain, D.C. and J.O. Pedersen, 2006, "Sponsored Search: A Brief History," Bulletin of the American Society for Information Science and Technology, Vol.32, No.2, pp. 12-13
[10] Xiaofei Niu, Jun Ma, and Dongmei Zhang, 2009, “A Survey of Contextual Advertising,“ Sixth International Conference on Fuzzy Systems and Knowledge Discovery
[11] M. Mahdian, and K. Tomak, 2007 “Pay-per-action model for online advertising,” Proceedings of the 3rd International Workshop on Internet and Network Economics, pp. 549-557
[12] H. Nazerzadeh, A. Saberi, and R. Vohra. Dynamic, 2008, “cost- per-action mechanisms and applications to online advertising,” InWWW ’’08: Proceedings of the World Wide Web Conference 2008
[13] Fan, T.-K. and Chang, C.-H , 2011, “ Blogger-Centric Contextual Advertising,” Journal of Expert Systems With Applications, Vol.38, No.3, pp. 1777-1788
[14] Alexander N. Pak , and Chin-Wan Chung, 2010, “A Wikipedia Matching Approach to Contextual Advertising,” World Wide Web, Vol.13, No.3, pp. 251-274
[15] Turney, P.D., 2000, “Learning algorithms for keyphrase extraction,” Information Retrieval, Vol.2, No.4, pp. 303-336
[16] J. J. M. Carrasco, D. Fain, K. Lang, and L. Zhukov, 2003, “Clustering of bipartite advertiser-keyword graph,” In International Conference on Data mining workshop
[17] Yih, W., Goodman, J., and Carvalho, V. R., 2006, “Finding advertising keywords on web pages,” In Proceedings of the 15th International Conference on World Wide Web WWW ’’06. ACM Press, New York, pp. 213-222
[18] Y. Jang, T. Lee, K. Kim, W. Lee, D. Ann, and S. Chung, 2007, “Keyword Management System based on Ontology for contextual Advertising,” In Sixth International Conference on Advanced language Processing and Web Information Technology, pp. 440-445
[19] H. Li, D. Zhang, J. Hu, H.-J. Zeng, and Z. Chen, 2007, "Finding keyword from online broadcasting content for targeted advertising," in ADKDD ’’07: Proceedings of the 1st international workshop on Data mining and audience intelligence for advertising. New York, NY, USA: ACM, pp. 55-62
[20] J. Liu, C. Wang, Z. Liu, and W. Yao, 2010, "Advertising Keywords Extraction from Web Pages," Web Information Systems and Mining, pp. 336-343
[21] Kushal S. Dave , Vasudeva Varma, 2010, “Pattern based keyword extraction for contextual advertising,” Proceedings of the 19th ACM international conference on Information and knowledge management
[22] Kristina Toutanova and Christopher D. Manning., 2000, “Enriching the Knowledge Sources Used in a Maximum Entropy Part-of-Speech Tagger,” In Proceedings of the Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora (EMNLP/VLC-2000), pp. 63-70
[23] Kristina Toutanova, Dan Klein, Christopher Manning, and Yoram Singer., 2003, ”Feature-Rich Part-of-Speech Tagging with a Cyclic Dependency Network,” In Proceedings of HLT-NAACL, pp. 252-259.
[24] George A. Miller, Richard Beckwith, Christiane Fellbaum, Derek Gross, and Katherine Miller., 1993, “Introduction to. WordNet : An on-Line Lexical Database,” International Journal of. Lexicography, Vol.3, No.4, pp. 235-244
[25] Pedersen, Ted, Siddharth Patwardhan, and Jason Michelizzi. 2004, “Wordnet:: similarity--measuring the relatedness of concepts,” In Proceedings of the Nineteenth National Conference on Artificial Intelligence (AAAI-04). AAAI Press, Cambridge, MA, pp. 1024-1025
[26] Resnik, 1995, “Using information content to evaluate semantic similarity in a taxonomy,” In Proceedings of the 14th International Joint Conference on Artificial Intelligence, pp. 448–453
[27] Lin, 1998, “An information-theoretic definition of similarity,” In Proceedings of the International Conference on Machine Learning
[28] Jiang and D. Conrath., 1997, “Semantic similarity based on corpus statistics and lexical taxonomy,” In Proceedings on International Conference on Research in Computational Linguistics, pp. 19–33
[29] Leacock and M. Chodorow., 1998, “Combining local context andWordNet similarity for word sense identification,” In C. Fellbaum, editor, WordNet: An electronic lexical database, pp. 265–283
[30] Wu and M. Palmer., 1994, “Verb semantics and lexical selection,” In 32nd Annual Meeting of the Association for Computational Linguistics, pp. 133–138
[31] Hirst and D. St-Onge., 1998, “Lexical chains as representations of context for the detection and correction of malapropisms,” In C. Fellbaum, editor, WordNet: An electronic lexical database, pp. 305–332
[32] Banerjee and T. Pedersen., 2003, “Extended gloss overlaps as a measure of semantic relatedness,” In Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence, pp. 805–810
[33] Patwardhan., 2003, “Incorporating dictionary and corpus information into a context vector measure of semantic relatedness,” Master’s thesis, University of Minnesota, Duluth
[34] Wikipedia “PageRank,” available online at http://en.wikipedia.org/wiki/PageRank
指導教授 陳彥良(Yen-liang Chen) 審核日期 2012-7-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明