博碩士論文 994203046 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:18.226.226.158
姓名 蔡伯煜(Po-Yu Tsai)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 K線圖探勘於股票預測之研究
(Mining candlestick charts for stock prediction)
相關論文
★ 利用資料探勘技術建立商用複合機銷售預測模型★ 應用資料探勘技術於資源配置預測之研究-以某電腦代工支援單位為例
★ 資料探勘技術應用於航空業航班延誤分析-以C公司為例★ 全球供應鏈下新產品的安全控管-以C公司為例
★ 資料探勘應用於半導體雷射產業-以A公司為例★ 應用資料探勘技術於空運出口貨物存倉時間預測-以A公司為例
★ 使用資料探勘分類技術優化YouBike運補作業★ 特徵屬性篩選對於不同資料類型之影響
★ 資料探勘應用於B2B網路型態之企業官網研究-以T公司為例★ 衍生性金融商品之客戶投資分析與建議-整合分群與關聯法則技術
★ 應用卷積式神經網路建立肝臟超音波影像輔助判別模型★ 基於卷積神經網路之身分識別系統
★ 能源管理系統電能補值方法誤差率比較分析★ 企業員工情感分析與管理系統之研發
★ 資料淨化於類別不平衡問題: 機器學習觀點★ 資料探勘技術應用於旅客自助報到之分析—以C航空公司為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 股價預測 (stock prediction) 對於投資者而言是一個有趣的議題之外,在學術上也是一個重要的議題。然而由於股價的變動因素過多,使得投資者難以預測股價,於是發展出「基本分析」及「技術分析」來輔助投資者進行決策。K 線圖是一種技術分析的方法,其中包含歷史交易的價格和交易量資料,因此投資者可以根據 K 線圖所顯示的波動趨勢和型態來分析股價趨勢。然而以往的 K 線圖分析法皆是根據分析師個人的經驗,因而缺乏一套客觀且自動化的方法來解讀 K 線圖,為了改善這個限制,本研究提出一個 K 線圖探勘 (Candlestick Chart Mining,CCM),其作法是透過影像處理技術來萃取出 K 線圖影像的特徵向量,結合傳統技術分析的技術指標來預測股價漲跌趨勢,並且透過固定模式和滑動視窗模式來訓練分類器。
根據實驗結果,本研究所提出的新方法,結合影像特徵及技術指標特徵的混合特徵對於提升股價預測正確率是有用的。且在本研究所做的短、中、長期股票預測,中期股票預測中的影像特徵預測效能比技術指標特徵好,而滑動視窗模式相較於固定模式而言,更適合用於中期股票預測。
摘要(英) Stock prediction is an interesting and important issue for many investors. However, the factors that affect stock price are very complicated and difficult to analyze. Therefore, it is very hard to effectively predict stock price. In general, both fundamental analysis and technical analysis have been used for stock prediction. The analysis of candlestick chart (also called K chart) is one of the technical analysis methods since such figures usually contain lots of trading information which allow the investors to analyze the stock trend. However, previous studies of K chart analysis have all been based on the analysts’’ personal experiences. In the other words, an objective and automated method to interpret those figures is lacking. To solve this limitation, we propose a novel method called Candlestick Chart Mining (CCM). In CCM, the image processing technique is used to extract the image features from K charts. Particularly, the texture features are extracted as the image descriptors to combine with some technical indicators.
The results demonstrate that the new method that we proposed to combine the image features with the technical indicators is useful for improving stock prediction accuracy, and in the mid-term stock prediction. Moreover, using the image feature alone can make the neural network classifier to perform better than using the technical indicators. Furthermore, the sliding windows mode for training the prediction model is more suitable than the stable training mode for the mid-term stock prediction.
關鍵字(中) ★ 影像資料探勘
★ K 線圖影像
★ 股價分析
關鍵字(英) ★ stock prediction
★ candlestick chart
★ image mining
論文目次 摘要 i
Abstract ii
致謝辭 iii
目錄 iv
圖目錄 v
表目錄 vi
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 2
1.3 研究貢獻 3
1.4 論文架構 3
第二章 文獻探討 4
2.1 股價預測 4
2.2 技術指標 5
2.3 型態學與趨勢理論 6
2.4 相關研究 8
第三章 K 線圖探勘 (candlestick charts mining) 11
3.1 資料蒐集與整理 12
3.2 技術指標特徵 14
3.3 K 線圖影像特徵 16
3.3.1 K線圖影像分析與轉換 16
3.3.2 K線圖影像特徵萃取 19
3.4 特徵向量內容 20
3.5 模型建立與效能評估 20
第四章 實驗結果與相關討論 24
4.1 實驗環境與設計 24
4.2 實驗結果 26
4.3 討論 29
第五章 結論 32
5.1 研究總結 32
5.2 未來研究方向 32
參考文獻 34
參考文獻 英文部分
[1]Fama, E.F.,“Efficient capital markets: A review of theory and empirical work,”Journal of Finance, vol. 25, no. 2, pp. 383-417, 1970.
[2]Wyckoff, P., The Psychology of Stock Market Timing,” Prentice-Hall, New Jersey, 1967.
[3]Abarbanell, J.S., and Bushee, B.J.,“Fundamental analysis, future earnings, and stock prices,”Journal of Accounting Research, vol. 35, no. 1, pp. 1-24, 1997.
[4]Dechow, P.M., Hutton, A.P., Meulbroek, L., and Sloana, R.G., “Short-sellers, fundamental analysis, and stock returns,”Journal of Financial Economics, vol. 61, no. 1, pp. 77-106, 2001.
[5]Edwards, R.D., and Magee, J.,“Technical Analysis of Stock Trends, 7th edition,”AMACOM, 1997.
[6]Murphy, J.J.,“Technical analysis of the financial markets: a comprehensive guide to trading methods and applications,”New York Institute of Finance, 1999.
[7]Levy, R.A.,“Relative strength as a criterion for investment selection,”Journal of Finance, vol. 22, no. 4, pp. 595-610, 1967.
[8]Brock, W., Lakonishok, J., and LeBaron, B.,“Simple technical trading rules and the stochastic properties of stock returns,”Journal of Finance, vol. 47, no. 5, pp. 1731-1764, 1992.
[9]Ratner, M., and Leal, R.P.C.,“Tests of technical trading strategies in the emerging equity markets of Latin America and Asia,”Journal of Banking and Finance, vol. 23, no. 12, pp. 1887-1905, 1999.
[10]Gunasekaragea, A., and Power, D. M.,“The profitability of moving average trading rules in South Asian stock markets,”Emerging Markets Review, vol. 2, no. 1, pp, 17-33, 2001.
[11]Kwon, K.Y., and Kish, R.J.,“A comparative study of technical trading strategies and return predictability: An extension of Brock, Lakonishok, and LeBaron (1992) using NYSE and NASDAQ indices,” The Quarterly Review of Economics and Finance, vol. 42, no. 3, pp. 611-631, 2002.
[12]Morris, G.L.,“Candlestick Charting Explained: Time Techniques for Trading Stocks and Futures, Second ed.,” McGraw-Hill Trade, New York, 1995.
[13]Caginalp, G., and Laurent, H.,“The predictive power of price patterns,”Applied Mathematical Finance, vol. 5, no. 3, pp. 181-205, 1998.
[14]Lee, K.H., and Jo, G.S.,“Expert system for predicting stock market timing using a candlestick chart,”Expert Systems with Applications, vol. 16, no. 4, pp. 357-364, 1999.
[15]Fiessa, N.M., and MacDonald, R.,“Towards the fundamentals of technical analysis: analysing the information content of High, Low and Close prices,” Economic Modeling, vol. 19, no. 3, pp. 353-374, 2002.
[16]Lee, C.H.L., Liu, A., and Chen, W.S.,“Pattern discovery of fuzzy time series for financial prediction,” IEEE Transactions on Knowledge and Data Engineering, vol. 18, no. 5, pp. 613-625, 2006.
[17]Prechter, R.R.,“R.N. Elliott’s Masterworks: The Definitive Collection,” New Classics, 1994a.
[18]Prechter, R.R.,“The Complete Elliott Wave Writings of A. Hamilton Bolton,” Bookworld Services, 1994b.
[19]Daubechies, I.,“Orthonormal bases of compactly supported wavelets,”Communications on Pure and Applied Mathematics, vol. 41, no. 7, pp. 909-996, 1988.
[20]Mallat, S.G.,“A theory for multiresolution signal decomposition:the wavelet representation,”IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, no. 7, pp. 674-693, 1989.
[21]Rioul, O., and Vetterli, M.,“Wavelets and signal processing,”IEEE. Signal Processing Mag., vol. 8, pp. 14-38, Oct. 1991
[22]Stollnitz, E.J., DeRose, T.D., and Salesin, D.H., “Wavelets for Computer Graphics: A Primer, Part 2,”IEEE Computer Graphics and Applications, vol.15 no.4, pp.75-85, 1995
[23]Chuang, G.C., and Kuo, C.J., “Wavelet descriptor of planar curves: Theory and applications,”IEEE Trans. Image Processing, vol. 5, pp.56 -70, 1996.
[24]Rui, Y., Huang, T.S., and Chang, S.F.,“Image retrieval: current techniques, promising directions and open issues,”Journal of Visual Communication and Image Representation, vol. 10, no. 1, pp. 39-62, 1999.
[25]Jiang, W. and Ortega, A.,“Lifting factorization-based discrete wavelet transform architecture design,”IEEE Trans. on Circuits and Systems for technology, vol. 11, pp. 651-657, 2001.
[26]Fernando, P.C., Julio, A.R., and Javier, G., “Estimating GARCH models using support vector machines,” Quantitative Finance, vol. 3, no. 3, pp. 163-172, 2003.
[27]Saad, E.W., Prokhorov, D.V., and Wunsch, D.C., “Comparative study of stock trend prediction using time delay, recurrent and probabilistic neural networks,”IEEE Transactions on Neural Networks, vol. 9, no. 6, pp. 1456-1470, 1998.
[28]Chen, A.S., Leung, M.T., Daouk, H.,“Application of neural networks to an emerging financial market: forecasting and trading the Taiwan Stock Index,”Computers & Operations Research, vol. 30, no. 6, pp. 901-923, 2003.
[29]Zhang, D., and Zhou, L.,“Discovering golden nuggets: Data mining in financial application,”IEEE Transactions on Systems, Man, and Cybernetics, Part C, Applications and Reviews, vol. 34, no. 4, pp. 513-522, 2004.
[30]Qi, M., and Zhang, G.P.,“Trend time-series modeling and forecasting with neural networks,”IEEE Transactions on Neural Networks, vol. 19, no. 5, pp. 808-816, 2008.
[31]Tsai, C.F., Lin, Y.C., Yen, D.C., Chen, Y. M., “Predicting stock returns by classifier ensembles,” Applied Soft Computing, vol. 12, no. 2, pp. 2452-2459, 2011.
[32]Wang, J.Z., Wang, J.J., Zhang, Z.G., Guo, S.P., “Forecasting stock indices with back propagation neural network,” Expert Systems with Applications, vol. 38, no. 11, pp. 14346–14355, 2011
[33]Tsai, C.F., and Hsiao, Y.C.,“Combining multiple feature selection methods for stock prediction: union, intersection, and multi-intersection approaches,” Decision Support Systems, vol. 50, no. 1, pp. 258-269, 2010.
中文部分
[34]于明,「點數圖交易法︰深藏120餘年古老金融煉金術」,地震出版社,2011。
指導教授 蔡志豐(Chih-Fong Tsai) 審核日期 2012-7-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明