博碩士論文 995201071 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:48 、訪客IP:3.137.166.61
姓名 林武慶(Wu-Ching Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 玻璃基板整合被動元件製程之CMOS功率放大器
(CMOS Power Amplifier Integrated with Passive Devices on Glass Substrate)
相關論文
★ 電子式基因序列偵測晶片之原型★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用
★ 使用覆晶技術之微波與毫米波積體電路★ 注入增強型與電場終止型之絕緣閘雙極性電晶體佈局設計與分析
★ 以標準CMOS製程實現之850 nm矽光檢測器★ 600 V新型溝渠式載子儲存絕緣閘雙極性電晶體之設計
★ 具有低摻雜P型緩衝層與穿透型P+射源結構之600V穿透式絕緣閘雙極性電晶體★ 雙閘極金氧半場效電晶體與電路應用
★ 空乏型功率金屬氧化物半導體場效電晶體 設計、模擬與特性分析★ 高頻氮化鋁鎵/氮化鎵高速電子遷移率電晶體佈局設計及特性分析
★ 氮化鎵電晶體 SPICE 模型建立 與反向導通特性分析★ 加強型氮化鎵電晶體之閘極電流與電容研究和長時間測量分析
★ 新型加強型氮化鎵高電子遷移率電晶體之電性探討★ 氮化鎵蕭特基二極體與高電子遷移率電晶體之設計與製作
★ 整合蕭特基p型氮化鎵閘極二極體與加強型p型氮化鎵閘極高電子遷移率電晶體之新型電晶體★ 垂直型氧化鎵蕭特基二極體於氧化鎵基板之製作與特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 利用CMOS製程製作之功率放大器因矽基板絕緣度較差且有較小崩潰電壓限制的缺點,使功率放大器有較差的輸出功率及功率增加效率表現。為了改善矽基板絕緣度低所造成的基板損失,本論文設計的功率放大器利用玻璃基板整合被動元件製程(Glass Substrate Integrated Passive Device Process,GIPD)將被動元件製作在具有高絕緣性的玻璃基板上,降低基板損失以提高被動元件的品質因素,並藉由此製程所提供的覆晶方式(Flip Chip)將被動元件與放大器電路整合。
首先利用TSMC CMOS 0.18 μm RF NMOS模型加入寄生效應建立一串疊式元件(Cascode MOSFET)模型,並製作出串疊12組及48組的測試元件,分析此測試元件的直流特性、高頻特性及高頻功率特性,並和模型比較以驗證串疊式元件模型的準確性。
使用此串疊式元件模型並藉由國家晶片中心(National Chip Implementation Center)所提供的玻璃基板整合被動元件製程,將玻璃基板上之被動元件與使用TSMC 0.18 μm CMOS製程製作之驅動/功率放大級串疊式元件晶片利用覆晶封裝技術整合為Class-E及Class-AB功率放大器電路。此電路的主要特色為將被動元件製作於高絕緣度的玻璃基板上,藉此改善被動元件製作於矽基板上所造成的基板損失與避免使用打線造成的寄生電感所產生的寄生效應。Class-E功率放大器驅動級採用鎖模(Mode Locking)技術,功率放大級元件採用串疊架構。Class-AB功率放大器驅動級和功率放大級皆採用串疊架構,以利提供較大的輸出功率。但實際量測到的功率特性和模擬結果比較有差異,此為覆晶用錫鉛球產生的額外寄生效應造成。
摘要(英) The output power and power added efficiency of power amplifiers implemented in standard CMOS are limited due to silicon substrate loss and low quality factor of passive components. This thesis presented CMOS power amplifiers with the matching networks fabricated by glass substrate integrated passive device (GIPD) process. By using GIPD process, it is possible to obtain the improved quality factor of passive components and reduced substrate loss.
First of all, a cascode device model based on TSMC CMOS 0.18 μm RF NMOS with parasitic effect was proposed and investigated with validation of dc, ac, and power characteristics. The cascode arrangement of transistors was used to increase operation voltage and thus higher output power capability. Subsequently, two CMOS power amplifiers using proposed cascode device model and GIPD process were designed and characterized. Class-E and class-AB power amplifiers were studied with single-end input and output but differential operation inside. In the class-E amplifier, the driver stage was implemented by mode-locking methodology and power stage was implemented in cascode. In the class-AB amplifier, transistors in both stages were connected in cascode for maximum output power. The measured power performance was not as good as simulated, the possible cause was from the flip-chip bumps.
關鍵字(中) ★ 功率放大器
★ 串疊元件
關鍵字(英) ★ Cascode Devices
★ Power Amplifier
論文目次 摘要 ..................................................................................................................................iv
Abstract .............................................................................................................................. v
致謝 ..................................................................................................................................vi
圖目錄 ..............................................................................................................................ix
表目錄 ............................................................................................................................xvi
第一章 導論............................................................................................................ 1
1.1 研究背景與動機 ............................................................................................ 1
1.2 相關研究發展 ................................................................................................ 2
1.3 論文架構 ........................................................................................................ 6
第二章 串疊結構之互補式金氧半場效電晶體特性分析 ................................... 7
2.1 簡介 ................................................................................................................ 7
2.2 串疊式電晶體模型 ........................................................................................ 7
2.3 串疊式電晶體特性分析 .............................................................................. 12
2.3.1 直流特性模擬與量測結果 ................................................................. 12
2.3.2 串疊式電晶體之電壓分配情形. ........................................................ 16
2.3.3 小訊號散射參數模擬與量測結果. .................................................... 18
2.4 高頻功率特性 .............................................................................................. 25
2.4.1 負載拉移量測系統簡介. .................................................................... 25
2.4.2 高頻功率特性模擬與量測結果. ........................................................ 27
2.5 鄰近通道功率比例量測結果 ...................................................................... 40
2.6 結語 .............................................................................................................. 45
第三章 與玻璃基板覆晶之CMOS功率放大器 ............................................... 46
3.1 簡介 .............................................................................................................. 46
3.2 玻璃基板整合被動元件製程簡介 .............................................................. 46
3.3 Class-E功率放大器簡介 ............................................................................. 50
3.4 Class-E功率放大器 ..................................................................................... 51
3.4.1 電路架構. ............................................................................................ 51
viii
3.4.2 電路模擬與量測結果. ........................................................................ 58
3.5 Class-AB功率放大器 .................................................................................. 65
3.5.1 電路架構. ............................................................................................ 65
3.5.2 電路模擬與量測結果. ........................................................................ 70
3.6 結語 .............................................................................................................. 77
第四章 結論.......................................................................................................... 78
參考文獻 ......................................................................................................................... 79
附錄A 串疊結構之氮化鎵電晶體特性分析 ..................................................... 82
A.1 簡介 .............................................................................................................. 82
A.2 高頻功率特性量測結果 .............................................................................. 84
A.3 鄰近通道洩漏功率比量測結果 .................................................................. 95
A.4 結語 .............................................................................................................. 98
參考文獻 [1] M. Hassan, L.E. Larson, V.W. Leung, D.F. Kimball and P.M. Asbeck, “A Wideband CMOS/GaAs HBT Envelope Tracking Power Amplifier for 4G LTE Mobile Terminal Applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 5, pp. 1321-1330, May. 2012.
[2] B. Geller, A. Hanson, A. Chaudhari, A. Edwards and I.C. Kizilyalli, “A Broadband Low Cost GaN-on-Silicon MMIC Amplifier,” IEEE Radio Frequency Integrated Circuits Symposium, pp. 527-530, 2008.
[3] Hae-Chang Jeong, Hyun-Seok Oh and Kyung-Whan Yeom, “A Miniaturized WiMAX Band 4-W Class-F GaN HEMT Power Amplifier Module,” IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 12, pp. 3184-3194, Dec. 2011.
[4] A. Mazzanti, L. Larcher, R. Brama and F. Svelto, “Analysis of Reliability and Power Efficiency in Cascode Class-E PAs,” IEEE Journal of Solid-State Circuits, vol. 41, no. 5, pp. 1222-1229, May. 2006.
[5] M. Apostolidou, M.P. van der Heijden, D.M.W. Leenaerts, J. Sonsky, A. Heringa and I. Volokhine, “A 65 nm CMOS 30 dBm Class-E RF Power Amplifier With 60% PAE and 40% PAE at 16 dB Back-Off,” IEEE Journal of Solid-State Circuits, vol. 44, no. 5, pp. 1372-1379, May. 2009.
[6] Ki Yong Son, Changkun Park, and Songcheol Hong, “A 1.8-GHz CMOS Power Amplifier Using Stacked nMOS and pMOS Structures for High-Voltage Operation,” IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 11, pp. 2652-2660, Nov. 2009.
[7] Kyu Hwan An, Ockgoo Lee, Hyungwook Kim, Dong Ho Lee, Jeonghu Han, Ki Seok Yang, Younsuk Kim, Jae Joon Chang, Wangmyong Woo, Chang-Ho Lee, Haksun Kim and Joy Laskar, “Power-Combining Transformer Techniques for Fully-Integrated CMOS Power Amplifiers,” IEEE Journal of Solid-State Circuits, vol. 43, no. 5, pp. 1064-1075, May. 2008.
[8] Changkun Park, Jeonghu Han, Haksun Kim and Songcheol Hong, “A 1.8-GHz CMOS Power Amplifier Using a Dual-Primary Transformer With Improved Efficiency in the Low Power Region,” IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 4, pp. 782-792, Apr. 2008.
[9] Yonghoon Song, Sungho Lee, Jaejun Lee and Sangwook Nam, “A 29 dBmCMOS Class-E Power Amplifier with 63% PAE Using Negative Capacitance,” IEEE Custom Integrated Circuits Conference, pp. 399-402, 2009.
[10] Chi-Hsien Lin and Hong-Yeh Chang, “A High Efficiency Broadband Class-E Power Amplifier Using a Reactance Compensation Technique,” IEEE Microwave and Wireless Components Letters, vol. 20, no. 9, pp. 507-509, Sep. 2010.
[11] Kun-Seok Lee, Hamhee Jeon, Youngchang Yoon, Hyungwook Kim, Jiwan Kim and Chang-Ho Lee, “A linearity improvement technique for a class-AB CMOS Power Amplifier with a direct feedback path,” IEEE Asian Solid-State Circuits Conference, pp. 1-4, Nov. 2010.
[12] M. Nick, A. Mortazawi, “Adaptive Input-Power Distribution in Doherty Power Amplifiers for Linearity and Efficiency Enhancement,” IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 11, pp.2764-2711, Nov. 2010.
[13] Bumman Kim, Jangheon Kim, Ildu Kim and Jeonghyeon Cha, “The Doherty Power Amplifier,” IEEE Microwave Magazine, pp. 42-50, Oct. 2006.
[14] R. Brama, L. Larcher, A. Mazzanti and F. Svelto, “A 30.5 dBm 48% PAE CMOS Class-E PA With Integrated Balun for RF Applications,” IEEE Journal of Solid-State Circuits, vol. 43, no. 8, pp. 1755-1762, Aug. 2008.
[15] Ockgoo Lee, Jeonghu Han, Kyu Hwan An, Dong Ho Lee, Kun-Seok Lee, Songcheol Hong and Chang-Ho Lee, “A Charging Acceleration Technique for Highly Efficient Cascode Class-E CMOS Power Amplifiers,” IEEE Journal of Solid-State Circuits, vol. 45, no. 10, pp. 2184-2197, Oct. 2010.
[16] King-Chun Tsai and P.R. Gray, “A 1.9-GHz, 1-W CMOS Class-E Power
Amplifier for Wireless Communications,” IEEE Journal of Solid-State Circuits, Vol. 34, no. 7, pp. 962-970, July. 1999.
[17] Ockgoo Lee, Kyu Hwan An, Hyungwook Kim, Dong Ho Lee, Jeonghu Han, Ki Seok Yang, Chang-Ho Lee, Haksun Kim and Joy Laskar, ”Analysis and Design of Fully Integrated High-Power Parallel-Circuit Class-E CMOS Power Amplifiers,” IEEE Transactions on Circuits and Systems-I: regular papers, vol. 57, no. 3, pp. 725-734, Mar. 2010.
[18] Yonghoon Song, Sungho Lee, Eunil Cho, Jaejun Lee and Sangwook Nam, “A CMOS Class-E Power Amplifier With Voltage Stress Relief and Enhanced Efficiency,” IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 2, pp. 310-317, Feb. 2010.
[19] A. Giry, J.M. Fournier and M. Pons, “A 1.9 GHz low voltage CMOS poweramplifier for medium power RF applications,” IEEE Radio Frequency Integrated Circuits Symposium, pp. 121-124, Jun. 2000.
[20] C. Fallesen and P. Asbeck, “A highly integrated 1 W CMOS power amplifier for GSM-1800 with 45% PAE,” IEEE International Solid-State Circuits Conference, Feb. 2001.
[21] D. Chowdhury, C.D. Hull, O.B. Degani, P. Goyal, Y. Wang, A.M. Niknejad, “A Single-Chip Highly Linear 2.4GHz 30dBm Power Amplifier in 90nm CMOS,” IEEE International Solid-State Circuits Conference, pp. 378-379, Feb. 2009.
[22] Kyu Hwan An, Dong Ho Lee, Ockgoo Lee, Hyungwook Kim, Jeonghu Han, Woonyun Kim, Chang-Ho Lee, Haksun Kim and Joy Laskar, “A 2.4 GHz Fully Integrated Linear CMOS Power Amplifier With Discrete Power Control,” IEEE Microwave and Wireless Components Letters, vol. 19, no. 7, pp, 479-481, Jul. 2009.
[23] Jihwan Kim, Hyungwook Kim, Youngchang Yoon, Kyu Hwan An, Woonyun Kim, Chang-Ho Lee, Kevin T. Kornegay and Joy Laskar, “A Discrete Resizing and Concurrent Power Combining Structure for Linear CMOS Power Amplifier,” IEEE Radio Frequency Integrated Circuits Symposium, pp. 387-390, 2010.
[24] 林柏安, “使用覆晶技術之微波與毫米波積體電路,” 碩士論文, 中央大學, 2010.
[25] 蔡翊翔, “微波功率放大器線性度改善研究,” 碩士論文, 中央大學, 2010.
[26] 周福興, “不同佈局薄膜電容分析與玻璃基板覆晶之功率放大器設計,” 碩士論文, 中央大學, 2011.
[27] 楊雅雯, “增強型假晶格高電子遷移率電晶體模型的建立與微波功率放大器設計,” 碩士論文, 中央大學, 2009.
[28] 陳智浩, “直流偏壓擾動造成功率放大器失真研究與功率結合方式之CMOS推挽式E類功率放大器設計,” 碩士論文, 中山大學, 2009.
指導教授 辛裕明(Yue-ming Hsin) 審核日期 2012-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明