參考文獻 |
[1] Arikati, S.R., and Pandu Rangan, C. “Linear algorithm for optimal path cover problem Son interval graphs.” Inf. Process. Lett. pp. 149-153, 1990.
[2] Asdre, K., and Nikolopoulos, S.D. “The 1-fixed-endpoint path cover problem is polynomial on interval graphs”. Algorithmica, pp. 679-710, 2009.
[3] Bandelt, H.J., and Mulder, H.M. “Distance-hereditary graphs”, Journal of Combinatorial Theory Series B, Vol. 41, pp. 182-208, 1989.
[4] Berge, C. Graphs and Hypergraphs, North-Holland, Amsterdam , 1973.
[5] Bertossi, A.A. “Finding Hamiltonian circuits in proper interval graphs.” Inf. Process. Lett. pp. 97–101, 1983.
[6] Brandstädt, A., and Dragan, F.F. “A linear-time algorithm for connected-domination and Steiner tree on distance-hereditary graphs”, Networks Vol. 31, No. 3, pp. 177-182, 1998.
[7] Brandstädt, A., Le, V.B., and Spinrad, J.P., “Graph Classes: A Survey”, SIAM Monographs on Discrete Mathematics and Applications, Philadelphia, 1999.
[8] Bulterman, R., van der Sommen, F., Zwaan, G., Verhoeff, T., van Gasteren, A., and Feijen, W. “On computing a longest path in a tree”. Inf. Process. Lett. Vol.81, pp. 93-96, 2002.
[9] Chang, M.S., Hsieh, S.Y., and Chen, G.H. ”Dynamic programming on distance-hereditary graphs”, Proceedings of Seventh International Symposium on Algorithms and Computation (ISAAC’97), Lecture Notes in Computer Science, vol. 1350, pp.344-353, 1997.
[10] Chang, M.S., Peng, S.L., and Liaw, J.L. “Deferred-query: an efficient approach for some problems on interval graphs”. Networks Vol. 34, pp. 1-10, 1999.
[11] Corneil, D.G., Lerchs, H., and Stewart, L.K. “Complement reducible graphs”, Discrete Appl. Math. Vol. 3, pp. 163-174 ,1981.
[12] Corneil, D.G., Perl, Y., and Stewart, L.K. “A linear recognition algorithm for cographs,” SIAM J. Comput. Vol. 14, pp. 926-934, 1985.
[13] D’atri, A., and Moscarini, M. “Distance-hereditary graphs, Steiner trees, and connected domination,” SIAM J. Comput. Vol. 17, No. 3, pp. 521-538, 1988.
[14] Damaschke, P. “The Hamiltonian circuit problem for circle graphs is NP-complete.” Inf. Process. Lett. Vol. 32, pp. 1-2, 1989.
[15] Damaschke, P. “Paths in interval graphs and circular arc graphs.” Discrete Math. Vol. 112, pp.49-64, 1993.
[16] Damaschke, P., Deogun, J.S., Kratsch, D., and Steiner, G. “Finding Hamiltonian paths in cocomparability graphs using the bump number algorithm.” Order Vol. 8, pp. 383-391, 1992.
[17] Dragan, F.F. “Dominating cliques in distance-hereditary graphs,” Algorithm Theory SWAT’94 Fourth Scandinavian Workshop on Algorithm Theory, Lecture Notes in Computer Science, Vol. 824, Springer, Berlin, pp. 370-381, 1994.
[18] Howorka, E., A characterization of ptolemaic graphs, Journal of Graph Theory 5, pp. 323~331, 1981.
[19] Garey, M.R., and Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-completeness. Freeman, New York (1979)
[20] Garey, M.R., Johnson, D.S., and Tarjan R.E. “The planar Hamiltonian circuit problem is NP-complete.” SIAM J. Comput. Vol. 5, pp. 704-714, 1976.
[21] Golumbic, M.C. Algorithmic Graph Theory and Perfect Graphs, Academic press, NewYork (1980)
[22] Golumbic, M.C. Algorithmic Graph Theory and Perfect Graphs.” Annals of Discrete Mathematics, Vol. 57. North-Holland, Amsterdam , 2004.
[23] Hammer, P.L., and Maffray, F. “Complete separable graphs,” Discrete Appl. Math. Vol. 27, NO. 1, pp. 85-99, 1990.
[24] Howorka, E. “A characterization of distance-hereditary graphs”, Quarterly Journal of Mathematics (Oxford), Vol. 28, No. 2, pp. 417-420, 1977.
[25] Howorka, E. “A characterization of Ptolemaic graphs”, Journal of Graph Theory Vol. 5, pp. 323-331, 1981.
[26] Hsieh, S.Y. “Parallel decomposition of distance-hereditary graphs,” Proceedings of the Fourth International ACPC Conference Including Special Tracks on Parallel Numerics (ParNum’99) and Parallel Computing in Image Processing, Video Processing, and Multimedia (ACPC’99), Lecture Notes in Computer Science, Vol. 1557, pp. 417–426, 1999.
[27] Hsieh, S.Y., Ho, C.W., Hsu, T.S., Ko, M.T., and Chen, G.H. “Efficient parallel algorithms on distance-hereditary graphs,” Parallel Process. Lett. Vol. 9, No. 1, pp. 43-52, 1999.
[28] Hsieh, S.Y., Ho, C.W., Hsu, T.S., Ko, M.T., and Chen, G.H. “A faster implementation of a parallel tree contraction scheme and its application on distance-hereditary graphs,” J. Algorithms, Vol. 35, pp. 50-81, 2000.
[29] Hsieh, S.Y., Ho, C.W., Hsu, T.S., Ko, M.T., and Chen, G.H. “Characterization of efficient parallel solvable problems on distance-hereditary graphs,” SIAM J. Discrete Math. Vol. 15, No. 4, pp. 488-518, 2002.
[30] Hsieh, S.Y., Ho, C.W., Hsu, T.S., and Ko, M.T. “The Hamiltonian problem on distance-hereditary graphs,” Discrete Applied Math. Vol. 154, pp. 508-524, 2006.
[31] Hung, R.W., Wu, S.C., and Chang, M.S. “Hamiltonian cycle problem on distance-hereditary graphs,” J. Inform. Sci. Engrg. Vol. 19, pp. 827-838, 2003.
[32] Hung, R.W., and Chang, M.S. “Finding a minimum path cover of a distance-hereditary graph in polynomial time,” Discrete Applied Math. Vol. 155, pp. 2242-2256, 2007.
[33] Itai, A., Papadimitriou, C.H., and Szwarcfiter, J.L. “Hamiltonian paths in grid graphs.” SIAM J. Comput. Vol. 11, pp. 676-686, 1982.
[34] Ioannidou, K., Mertzios, G.B., and Nikolopoulos, S.D. “The Longest Path Problem has a Polynomial Solution on Interval Graphs,” Algorithmica, Vol. 61, No. 2, pp. 320-341, 2011.
[35] Keshavarz-Kohjerdi, F., and Bagheri, A., “An efficient parallel algorithm for the longest pathproblem in meshes”, Discrete Appl. Math., Volume 160, pp.210-217, 2012.
[36] Kirkpatrick, D.G., Reddy, K.M., Rangan, C.P., and Srinivasan, A, “Partial and perfect path covers of cographs”, Discrete Appl. Math., Volume 89, pp. 143-153, 1998.
[37] Mertzios, G.B., and Corneil, D.G., “A Simple Polynomial Algorithm for the Longest Path Problem on Comparability Graphs”, arXiv:1004.4560v1, 2010.
[38] Müller, H., and Nicolai, F. “Polynomial time algorithms for Hamiltonian problems on bipartite distance-hereditary graphs,” Inform. Process., Lett. Vol 46, pp. 225-230, 1993.
[39] Müller, H. “Hamiltonian circuits in chordal bipartite graphs.” Discrete Math. Vol. 156, pp. 291-298, 1996.
[40] Narasimhan, G. “A note on the Hamiltonian circuit problem on directed path graphs.” Inf. Process. Lett. Vol. 32, pp. 167-170, 1989.
[41] Nicolai, F. “Hamiltonian problems on distance-hereditary graphs,” Technique report, Gerhard-Mercator University, Germany, 1994.
[42] Takahara, Y., Teramoto, S., and Uehara, R. “Longest path problems on Ptolemaic graphs.” IEICE Trans. Inf. Syst. Vol. 91-D, pp.170-177, 2008
[43] Uehara, R., and Uno, Y. “Efficient algorithms for the longest path problem.” Proc. of the 15th Annual International Symp. on Algorithms and Computation (ISAAC). LNCS, Vol. 3341, pp. 871-883. Springer, Berlin , 2004.
[44] Uehara, R., and Valiente, G. “Linear structure of bipartite permutation graphs and the longest path problem.” Inf. Process. Lett. Vol. 103, pp. 71-77, 2007.
[45] Yeh, H.G., and Chang, G.J. “Weighted connected domination and Steiner trees in distance-hereditary graphs,” Discrete Appl. Math. Vol. 87, pp. 245-253, 1998.
[46] Yeh, H.G., and Chang, G.J. Linear-time algorithms for bipartite distance-hereditary graphs, Manuscript.
[47] Yeh, H.G., and Chang, G.J. “The path-partition problem in bipartite distance-hereditary graphs,” Taiwanese J. Math.Vol. 2, No. 3, pp. 353-360, 1998.
[48] Yeh, H.G., and Chang, G.J. “Weighted connected k-domination and weighted k-dominating clique in distance-hereditary graphs,” Theoret. Comput. Sci. Vol. 263, pp. 3-8, 2001. |