博碩士論文 995202050 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:13.59.38.110
姓名 楊沅智(Yuanjhih Yang)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 可適應天候變化的前車碰撞警示系統
(Weather-adapted Forward Collision Warning System)
相關論文
★ 適用於大面積及場景轉換的視訊錯誤隱藏法★ 虛擬觸覺系統中的力回饋修正與展現
★ 多頻譜衛星影像融合與紅外線影像合成★ 腹腔鏡膽囊切除手術模擬系統
★ 飛行模擬系統中的動態載入式多重解析度地形模塑★ 以凌波為基礎的多重解析度地形模塑與貼圖
★ 多重解析度光流分析與深度計算★ 體積守恆的變形模塑應用於腹腔鏡手術模擬
★ 互動式多重解析度模型編輯技術★ 以小波轉換為基礎的多重解析度邊線追蹤技術(Wavelet-based multiresolution edge tracking for edge detection)
★ 基於二次式誤差及屬性準則的多重解析度模塑★ 以整數小波轉換及灰色理論為基礎的漸進式影像壓縮
★ 建立在動態載入多重解析度地形模塑的戰術模擬★ 以多階分割的空間關係做人臉偵測與特徵擷取
★ 以小波轉換為基礎的影像浮水印與壓縮★ 外觀守恆及視點相關的多重解析度模塑
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 科技的發達與進步,使得人們對於生活上的習慣有很重大的改變。其中交通工具的普遍更為顯著,而人們在追求技術進步的同時也在追求更符合人性的科技,因此對於行車安全方面的要求也就更加的重視。
本論文整合了白天與夜間的前車偵測技術,首先我們提出一個白天夜晚的準則針對不同的時間使用不同的演算法。在判斷白天夜晚的準則中,我們在不同的影片取固定的影像數目 ,且每張大小為320?240影像裡我們取出固定數量和固定位置的像素點來代表整張影像,並求出取出像素的平均亮度和小於某個亮度門檻值的像素點數佔所有像素點的比例,依照這準則定義出門檻值來分別日間與夜晚,在日間的天候狀況下我們也分成了不同的情況,晴天、陰天、黃昏、收費站、車輛陰影、向陽、小雨和大雨。
在日間偵測前方車輛的演算法中,先對整張影像做第二差分找出不同強度的垂直邊影像和水平邊影像。而為了適應不同的天候,在定義二值化門檻值前,利用車道線偵測的結果將影像上半部的背景濾除掉,最後定義出動態的門檻值做影像的二值化。最後將二值化的影像,找出具有連續像素點的水平邊,而水平邊分成位於車子底部陰影的負水平邊和車體上的正水平邊,我們根據水平邊的兩端點位置找出是否有顯著的垂直邊或是是否具有對稱的兩垂直邊,若符合此條件的水平邊,最後再根據水平邊和車道寬比例是否位在我們定義的道路寬比例中,若符合則產生候選車輛。
在夜晚偵測的演算法中,我們使用車尾燈在影像中所呈現的特徵來偵測車尾燈。再以車尾燈的垂直距離、水平距離、移動軌跡、與兩車尾燈相關性等四項特徵配對,以偵測可能的候選車輛。最後再依據車尾燈對的距離變化量,計算與前車的碰撞時間 (time to collision, TTC) ,提供駕駛者警示。
摘要(英) As the growing and progressive of technology, people change the styles of daily life, especially on the land vehicle. When people pursued advanced techniques as well as the humanistic technology, the traffic safety is also an important issue.
We integrate the front car detection in day and night time, using different algorithm for the different time. The beginning we defined a criterion for judging what it day or night is, and decided what the algorithm we choose. The criterion judging day or night, we fetch fixed number of frame from different video. We fetch fixed pixels at fixed position for representing the whole image which size is 320×240, then calculating the average intensity and the percentage of bellow the threshold of pixels we fetch. According to the criterion, judging what it day or night is.
In daytime forwarding collision warning system, we fetch vertical edge response image and horizontal edge response image by second difference mask. For adapting different weather, we filter the background at the upper half of the image according to the result of lane detection system before defining threshold. Then we generate the bi-level gradient image with appropriate threshold. Then find the continuous pixels belong to the horizontal edge, the horizontal edge we divided into positive and negative for representing the bottom of car and body of car respectively. We find whether it has enough of vertical edge patency or symmetric vertical edge pair at the end point of horizontal edge. If the horizontal edge confirmed, we calculate the proportion of width of the horizontal edge with lane with. If the proportion confirmed, the candidate vehicles generate.
In nighttime forward collision warning system, we detect the tails of preceding vehicles. Then, we pair the lights using the features of the horizontal distance, the vertical heights, the trajectory, and correlation of a pair of lights. Finally, we estimate the time to collision (TTC) of the verified light pair and providing the warning for the driver.
關鍵字(中) ★ 適應天候
★ 前車碰撞警示
★ 碰撞
★ 車輛
關鍵字(英) ★ FCW
★ vehicle
★ Weather-adapted
★ collision
論文目次 摘要 ii
Abstract iii
致謝 v
目錄 vi
圖目錄 viii
表目錄 xi
第一章 緒論 1
1.1 研究動機 1
1.2 系統架構 3
1.3 論文架構 6
第二章 相關研究 7
2.1 車道線偵測 7
2.2 車輛偵測 11
2.2.1 日間車輛偵測 11
2.2.2 夜間車輛偵測 14
2.3 車輛追蹤 18
第三章 日間車輛偵測系統 19
3.1 線段偵測 19
3.2 車道線偵測 20
3.3 邊強度二值化 21
3.3.1定義ROI 22
3.3.2定義二值化門檻值 22
3.4 產生有意義水平線線段 24
3.5 刪除線段 25
3.5.1 刪除過短線段 25
3.5.2 刪除不在ROI內的線段 26
3.6 產生候選車輛 27
3.6.1 確認水平邊上方垂直邊的顯著性 27
3.6.2 找對稱的邊配對 30
3.7 刪除重疊的候選車輛 32
3.8 計算前車距離 32
第四章 日夜間判斷 35
第五章 實驗 44
5.1 實驗環境 44
5.2 實驗結果 45
5.3 討論 52
第六章 結論與未來展望 55
6.1 結論 55
6.2 未來展望 56
參考文獻 58
參考文獻 [1] Ahmad, M. B. and T. S. Choi, "Local threshold and boolean function based edge detection," IEEE Trans. on Consumer Electronics, vol.45, no.3, pp.674-679, 1999.
[2] Armingol, J. M., A. de la Escalera, C. Hilario, J. M. Collado, J. P. Carrasco, M. J. Flores, J. M. Pastor, and F. J. Rodriguez, "IVVI: Intelligent vehicle based on visual information," Robotics and Autonomous Systems, vol.55, no.12, pp.904-916, 2007.
[3] Bertozzi, M., A. Broggi, A. Fascioli, and S. Nichele, "Stereo vision-based vehicle detection," in Proc. of IEEE Intelligent Vehicles Symp., Dearborn, MI, Oct.3-5, 2000, pp.39-44.
[4] Betke, M., E. Haritaoglu, and L. S. Davis, "Real-time multiple vehicle detection and tracking from a moving vehicle," Machine Vision and Applications, vol.12, no.2, pp.69-83, 2000.
[5] Broggi, A., P. Cerri, and P. C. Antonello, "Multi-resolution vehicle detection using artificial vision," in Proc. of IEEE Intelligent Vehicles Symp., Parma, Italy, Jun.14-17, 2004, pp.310-314.
[6] Chen, Y.-L., C.-T. Lin, C.-J. Fan , C.-M. Hsieh, and B.-F. Wu, "Vision- based Nighttime Vehicle Detection and Range Estimation for Driver Assistance" in Proc. of IEEE int. Conf. on System, Man and Cybernetic, Taichung, Taiwan, Oct.12-15 2008, pp.2988-2993.
[7] Chen, K.-W., "Monocular Computer Vision Technigues for Road and Situation Detection", Master Thesis, Computer Science and Information Engineering, National Central University, Chungli, Taoyuan, Taiwan, Jun. 2005.
[8] Cheng, H.-Y. , B.-S. Jeng , P.-T. Tseng, and K.C. Fan, "Lane detection with moving vehicles in the traffic scenes", IEEE Trans. Intelligent Transportation Systems, vol.7, no.4, pp.571-582, Dec. 2006.
[9] Chern, M.-Y. and P.-C. Hou, "The lane recognition and vehicle detection at night for a camera-assisted car on highway," in Proc. of IEEE Int. Conf. on Robotics and Automation, Taipei, Taiwan, Sep.14-19, 2003, pp.2110-2115.
[10] Chern, M.-Y., "Development of a vehicle vision system for vehicle/lane detection on highway," in Proc. of 18th IPPR Conf. on Computer Vision, Graphics and Image Processing, Taipei, Taiwan, Aug.21-23, 2005, pp.803-810.
[11] Chu, J., L. Ji, L. Guo, Libibing, and R. Wang, "Study on method of detecting preceding vehicle based on monocular camera," in Proc. of IEEE Intelligent Vehicles Symp., Parma, Italy, Jun.14-17, 2004, pp.750-755.
[12] Clady, X., F. Collange, F. Jurie, and P. Martinet, "Cars detection and tracking with a vision sensor," in Proc. of IEEE Intelligent Vehicles Symp., Columbus, OH, Jun.9-11, 2003, pp.593-598.
[13] Collado, J. M., C. Hilario, A. De La Escalera, and J. M. Armingol, "Model based vehicle detection for intelligent vehicles," in Proc. of IEEE Intelligent Vehicles Symp., Parma, Italy, Jun.14-17, 2004, pp.572-577.
[14] Du, Y. and N. P. Papanikolopoulos, "Real-time vehicle following through a novel symmetry-based approach," in Proc. of IEEE Int. Conf. on Robotics and Automation, Albuquerque, NM, Apr.20-25, 1997, pp.3160-3165.
[15] Europe Road Safety Observatory, Traffic Safety Basic Facts 2007-Motorways, 2007.
[16] Gao, D., W. Li, J. Duan, and B. Zheng, "A practical method of road detection for intelligent vehicle," in Proc. of IEEE Int Conf. on Automation and Logistics, Shenyang, China, Aug.5-7, 2009, pp.980-985.
[17] Hsiao, P.-Y., C.-W. Yeh, S.-S. Huang, and L.-C. Fu, "A portable vision-based real-time lane departure warning system: Day and night," IEEE Trans. on Vehicular Technology, vol.58, no.4, pp.2089-2094, 2009.
[18] Hsieh, W.-C., L.-C. Fu, and S.-S. Huang, "Vision based obstacle warning system for on-road driving," in Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Las Vegas, NV, Oct.27-31, 2003, pp.3668-3673.
[19] Huang, S.-S., C.-J. Chen, P.-Y. Hsiao, and L.-C. Fu, "On-board vision system for lane recognition and front-vehicle detection to enhance driver’’s awareness," in Proc. of IEEE Int. Conf. on Robotics and Automation, New Orleans, LA, Apr.26-May 1, 2004, pp.2456-2461.
[20] Huang, Y.-C. and D.-C. Tseng, "A vision-based vehicle to vehicle detection and tracking system," in Proc. of 18th IPPR Conf. on Computer Vision, Graphics and Image Processing, Taipei, Taiwan, Aug.21-23, 2005, pp.866-873.
[21] Jazayeri, A., H., Cai, J.-Y. Zheng, and M. Tuceryan, "Vehicle detection and tracking in car video based on motion model", IEEE Trans. Intelligent Transportation Systems, vol.12, no.2, Jun. 2011, pp. 583-595.
[22] Jin, L.-S., B.-Y. Gu, R.-B. Wang, L. Guo, Y.-B. Zhao, and L.-H. Li, "Preceding vehicle detection based on multi-characteristics fusion," in Proc. of IEEE Int. Conf. on Vehicular Electronics and Safety, Shanghai, China, Dec.13-15, 2006, pp.356-360.
[23] Schamm, T., Christoph, C., and J., M. Zollner, "On-Road Vehicle Detection during Dusk and at Night", in Proc. of IEEE Intelligent Vehicles Symposium, University of California, San Diego, CA, pp.418-423, June. 21-24, 2010,
[24] Schwarzinger, M., T. Zielke, D. Noll, M. Brauckmann, and W. Vonseelen, "Vision-based car-following detection tracking and identification," in Proc. of IEEE Intelligent Vehicles Symp., Detroit, MI, Jun.29-Jul.1, 1992, pp.24-29.
[25] Science Daily, Avoiding Rear-end Collisions, http://www.sciencedaily.c
om/videos/2008/0501-avoiding_rearend_collisions.htm, 2008.
[26] Shyr, B.-Y., Daytime Detection of Leading and Neighboring Vehicles on Highway: A Major Capability for the Driver Assistant Vision System, Master Thesis, Electrical Engineering, National Chung Cheng Univ., Chia-yi, Taiwan, 2003.
[27] Tseng, D.-C., Monocular Computer Vision Aided Road Vehicle Driving for Safety, U.S. Patent No. 6765480, 2004.
[28] Vorndran, I., Unfallgeschehen im Straenverkehr 2006, Statistisches Bundesamt,http://www.destatis.de/jetspeed/portal/cms/Sites/destatis/Internet/DE/Content/Publikationen/Querschnittsveroeffentlichungen/WirtschaftStatistik/Verkehr/Unfallgeschehenstrassenverkehr2006,property=file.pdf, 2007.
[29] Wang, C.-C., Driver Assistance System for Lane Departure Prevention and Collision Avoidance with Night Vision, Master Thesis, Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan, 2004.
[30] Wang, C.-C., C.-J. Chen, Y.-M. Chan, L.-C. Fu, and P.-Y. Hsiao, "Lane detection and vehicle recognition for driver assistance system at daytime and nighttime," Image and Recognition Magazine, vol.12, no.2, pp.4-17, 2006.
[31] Zielke, T., M. Brauckmann, and W. Vonseelen, "Intensity and edge-based symmetry detection with an application to car-following," CVGIP: Image Understanding, vol.58, no.2, pp.177-190, 1993.
指導教授 曾定章(Din-Chang Tseng) 審核日期 2012-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明