博碩士論文 995202061 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:82 、訪客IP:18.221.238.204
姓名 黃朝頎(Chao-qi Huang)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 以光流法為基礎之人類特定行為分析系統
(The Optical Flow-Based Analysis of Human Behavior-Specific System)
相關論文
★ 使用視位與語音生物特徵作即時線上身分辨識★ 以影像為基礎之SMD包裝料帶對位系統
★ 手持式行動裝置內容偽變造偵測暨刪除內容資料復原的研究★ 基於SIFT演算法進行車牌認證
★ 基於動態線性決策函數之區域圖樣特徵於人臉辨識應用★ 基於GPU的SAR資料庫模擬器:SAR回波訊號與影像資料庫平行化架構 (PASSED)
★ 利用掌紋作個人身份之確認★ 利用色彩統計與鏡頭運鏡方式作視訊索引
★ 利用欄位群聚特徵和四個方向相鄰樹作表格文件分類★ 筆劃特徵用於離線中文字的辨認
★ 利用可調式區塊比對並結合多圖像資訊之影像運動向量估測★ 彩色影像分析及其應用於色彩量化影像搜尋及人臉偵測
★ 中英文名片商標的擷取及辨識★ 利用虛筆資訊特徵作中文簽名確認
★ 基於三角幾何學及顏色特徵作人臉偵測、人臉角度分類與人臉辨識★ 一個以膚色為基礎之互補人臉偵測策略
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著攝影機架設的普及與影像處理技術的發展,以視覺為基礎的行為分析已成為電腦視覺中即為重要的領域。本論文透過公共開放空間中固定攝影機所截取的監視畫面來分析人的行為,目的在分出該人的動作是屬於違法或是合法行為,在本篇論文中,違法行為包括抽菸與喝飲料行為,而合法行為則囊括講手機與其他行為。相較於過去的論文專著,本論文是在不建立背景的情況下,對上述行為進行分類的動作。
本論文大致可分為三個部份,分別是臉部區域的截取,多序列手部樣本點的新增與位置更新,以及特徵截取與最後的行為分析等三個步驟。本系統是透過人臉與手的接觸時間,煙霧偵測的結果,以及手持物體的大小等三個特徵來分類行為,最後以一個決策樹來合併上述三個特徵達到行為分類的目的。經實驗證實,在不同光源強度,不同環境背景,以及不同人的行為習慣下,本論文提出的方法都可以達到不錯的辨識效果。
摘要(英) With the popularization of image capturing devices and the mature development of image processing technique, vision-based human behavior analysis gradually attracts the attention and utilized in many fields. In order to detect illegal behaviors, cameras have to be mounted in public space to analyze human behavior to determine whether it is illegal or not. In this thesis, we focus on detecting smoking and drinking in certain public spaces as the illegal behaviors. Comparing with other works, our work does not need to establish the background in advance to classify human behavior.
The proposed system consists of three main modules including face region extraction, multiple hand samples extraction, and features extraction and behavior analysis. We extract three features from each human behavior. They are the touching time between the face and hand samples, smoke detection, and handheld object detection. Then a decision tree is employed to classify the human behavior using the extracted three features. Experimental result demonstrate that the proposed method can be suited and successfully applied in many environments under various conditions, such as different illumination intensities, different backgrounds, and the different habits exhibited by human.
關鍵字(中) ★ 人臉偵測
★ 光流法
★ 粒子濾波器
★ 比例直條圖
★ 煙霧偵測
★ 行為分析
關鍵字(英) ★ particle filter
★ analysis of human behavior
★ face detection
★ optical flow
★ smoke detection
★ ratio histogram
論文目次 Abstract I
摘要 II
致謝 III
目錄 IV
附圖目錄 VI
緒論 1
1.1 研究動機 1
1.2 相關研究 4
1.3 系統流程 6
1.4 論文架構 8
第二章 人臉偵測與追蹤 9
2.1 人臉偵測 9
2.2 人臉追蹤 15
第三章 手部偵測與追蹤 24
3.1 手部擺動區域 24
3.2 光流向量計算 26
3.3 手部運動分析與偵測 29
3.4 手部追蹤 36
3.5 多序列的手部樣本點 39
第四章 特徵截取與行為分析 45
4.1 人臉與手部樣本點的接觸偵測 45
4.2 多序列樣本點的刪除 48
4.3 手持物體偵測 49
4.4 煙霧偵測 52
4.5 行為分析 56
第五章 實驗結果 59
5.1 實驗環境 59
5.2 行為分析的分類結果 60
第六章 結論與未來工作 65
參考文獻 67
參考文獻 [1] 行政院衛生署|國民健康局|菸害防制資訊網|菸的危害|吸菸對健康的危害|癌症. Available: http://tobacco.bhp.doh.gov.tw/Show.aspx?MenuId=178
[2] 行政院衛生署|國民健康局|菸害防制資訊網|菸害防制法|修法歷程. Available: http://tobacco.bhp.doh.gov.tw/Show.aspx?MenuId=544
[3] I. Haritaoglu, D. Harwood, and L. Davis, "W4: Who? When? Where? What?—A Real-Time System for Detecting and Tracking People," Computer Vision—ECCV’’98, pp. 877-892, 1998.
[4] P. Wu, J. W. Hsieh, J. C. Cheng, S. C. Cheng, and S. Y. Tseng, "Human Smoking Event Detection Using Visual Interaction Clues," in ICPR, 2010, pp. 4344-4347.
[5] W. C. Wu and C. Y. Chen, "Detection System of Smoking Behavior Based on Face Analysis," in International Conference on Genetic and Evolutionary Computing, 2011, pp. 184-187.
[6] T. Jakovcevic, M. Braovic, D. Stipanicev, and D. Krstinic, "Review of Wildfire Smoke Detection Techniques Based on Visible Spectrum Video Analysis," in Proc. 7th Int. Symp. Image Signal Processing Anal., Dubrovnik, 2011, pp. 480-484.
[7] T. H. Chen, Y. H. Yin, S. F. Huang, and Y. T. Ye, "The Smoke Detection for Early Fire-Alarming System Base on Video Processing," in Intelligent Information Hiding and Multimedia Signal Processing, 2006, pp. 427-430.
[8] A. K. Jain, Fundamentals of Digital Image Processing: Prentice-Hall, Inc., 1989.
[9] D. Krstinić, D. Stipaničev, and T. Jakovčević, "Histogram-Based Smoke Segmentation in Forest Fire Detection System," Information Technology and Control, vol. 38, pp. 237-244, 2009.
[10] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach: Prentice hall, 2003.
[11] D. J. Hand, H. Mannila, and P. Smyth, Principles of Data Mining: The MIT press, 2001.
[12] P. Meer, "Robust Techniques for Computer Vision," Emerging topics in computer vision, pp. 107-190, 2004.
[13] A. E. Cetin and R. Ansari, "Signal Recovery from Wavelet Transform Maxima," Signal Processing, IEEE Transactions on, vol. 42, pp. 194-196, 1994.
[14] B. U. Toreyin, Y. Dedeoglu, and A. E. Cetin, "Wavelet Based Real-Time Smoke Detection in Video," in European Signal Processing Conference, 2005.
[15] B. U. Toreyin, Y. Dedeoglu, and A. E. Cetin, "Contour Based Smoke Detection in Video Using Wavelets," in European Signal Processing Conference, 2006, pp. 1-5.
[16] C. Anderson, P. Burt, and G. Van Der Wal, "Change Detection and Tracking Using Pyramid Transform Techniques," in SPIE Intelligent Robots and Computer Vision, 1985, pp. 300-305.
[17] J. L. Barron, D. J. Fleet, and S. Beauchemin, "Performance of Optical Flow Techniques," International journal of computer vision, vol. 12, pp. 43-77, 1994.
[18] B. D. Lucas and T. Kanade, "An Iterative Image Registration Technique with An Application to Stereo Vision," in Proc. DARPA Image Understanding Workshop, 1981.
[19] M. Isard and A. Blake, "Condensation—Conditional Density Propagation for Visual Tracking," International journal of computer vision, vol. 29, pp. 5-28, 1998.
[20] H. Fujiyoshi and A. J. Lipton, "Real-Time Human Motion Analysis by Image Skeletonization," in Workshop on Applications of Computer Vision, 1998, pp. 15-21.
[21] C. Stauffer and W. E. L. Grimson, "Adaptive Background Mixture Models for Real-Time Tracking," in Proc. IEEE Conf. Computer Vision and Pattern Recognition, 1999.
[22] R. A. Redner and H. F. Walker, "Mixture Densities, Maximum Likelihood and The EM Algorithm," SIAM review, pp. 195-239, 1984.
[23] P. Viola and M. Jones, "Rapid Object Detection Using A Boosted Cascade of Simple Features," in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Kauai, Hawaii, USA, 2001, pp. I-511-I-518 vol. 1.
[24] C. P. Papageorgiou, M. Oren, and T. Poggio, "A General Framework for Object Detection," in International Conference on Computer Vision, 1998, pp. 555-562.
[25] Y. Freund and R. E. Schapire, "Experiments with A New Boosting Algorithm," in Proc. of the 13-th Conf on Machine Learning, Bari, Italy: Morgan Kaufmann, 1996, pp. 148-156.
[26] L. Sun and G. Liu, "Visual Object Tracking Based on Combination of Local Description and Global Representation," Circuits and Systems for Video Technology, IEEE Transactions on, vol. 21, pp. 408-420, 2011.
[27] H. Bay, T. Tuytelaars, and L. Van Gool, "Surf: Speeded Up Robust Features," Computer Vision–ECCV 2006, pp. 404-417, 2006.
[28] R. E. Kalman, "A New Approach to Linear Filtering and Prediction Problems," Journal of basic Engineering, vol. 82, pp. 35-45, 1960.
[29] K. Nummiaro, E. Koller-Meier, and L. Van Gool, "An Adaptive Color-based Particle Filter," Image and Vision Computing, vol. 21, pp. 99-110, 2003.
[30] B. J. Yves, "Pyramidal Implementation of The Lucas-Kanade Feature Tracker," Microsoft Research Labs, Tech. Rep, 1999.
[31] J. MacQueen, "Some Methods for Classification and Analysis of Multivariate Observations," in Proceedings of the Fifth Symposium on Math, Statistics, and Probability, 1967, p. 14.
[32] C. C. Chiang, W. K. Tai, M. T. Yang, Y. T. Huang, and C. J. Huang, "A Novel Method for Detecting Lips, Eyes and Faces in Real Time," Real-Time Imaging, vol. 9, pp. 277-287, 2003.
[33] M. Soriano, B. Martinkauppi, S. Huovinen, and M. Laaksonen, "Using The Skin Locus to Cope with Changing Illumination Conditions in Color-based Face Tracking," in IEEE Nordic Signal Processing Symposium, Kolmarden, Sweden, 2000, pp. 383-386.
[34] S. J. McKenna, S. Jabri, Z. Duric, A. Rosenfeld, and H. Wechsler, "Tracking Groups of People," Computer Vision and Image Understanding, vol. 80, pp. 42-56, 2000.
[35] N. Peterfreund, "The Velocity Snake," in Proc. IEEE Nonrigid and Articulated Motion Workshop, Virgin Islands, 1997, pp. 70-79.
[36] Q. Delamarre and O. Faugeras, "3D Articulated Models and Multiview Tracking with Physical Forces," Computer Vision and Image Understanding, vol. 81, pp. 328-357, 2001.
[37] D. S. Jang and H. I. Choi, "Active Models for Tracking Moving Objects," Pattern Recognition, vol. 33, pp. 1135-1146, 2000.
[38] W. He, T. Yamashita, H. Lu, and S. Lao, "Surf Tracking," in ICCV, 2009, pp. 1586-1592.
[39] D. G. Lowe, "Object Recognition from Local Scale-Invariant Features," in ICCV, 1999, pp. 1150-1157 vol. 2.
[40] D. A. Ross, J. Lim, R. S. Lin, and M. H. Yang, "Incremental Learning for Robust Visual Tracking," International journal of computer vision, vol. 77, pp. 125-141, 2008.
[41] C. H. Chuang, J. W. Hsieh, L. W. Tsai, S. Y. Chen, and K. C. Fan, "Carried Object Detection Using Ratio Histogram and Its Application to Suspicious Event Analysis," Circuits and Systems for Video Technology, IEEE Transactions on, vol. 19, pp. 911-916, 2009.
[42] 鄭俊誠、陳敦裕、謝君偉(2010),「植基於馬可夫模型之手部與物件相關行為分析系統」,元智大學電機工程學系碩士論文。
指導教授 范國清(Kuo-chin Fan) 審核日期 2012-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明