博碩士論文 995202065 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:48 、訪客IP:18.191.195.228
姓名 鄭清懷(Ching-Haui Cheng)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 利用USRP N200實作在感知無線電網路中保護主要使用者的繞徑協定
(Implementation of Protection-Based Routing Protocols for Cognitive Radio Networks)
相關論文
★ 基於OP-TEE的可信應用程式軟體生態系統★ SeFence: 基於安全感測的可信任周邊存取控制
★ 高解析度二維地理影像的三維建模:旋轉變換投影與傳統方法的比較研究★ 在低軌道衛星無線通訊中的CSI預測方法
★ 為多流量低軌道衛星系統提出的動態換手策略★ 基於Trustzone的智慧型設備語音隱私保護系統
★ 一種減輕LEO衛星網路干擾的方案★ TruzGPS:基於TrustZone的位置隱私權保護系統
★ 衛星地面整合網路之隨機接入前導訊號設計與偵測★ SatPolicy: 基於Trustzone的衛星政策執行系統
★ TruzMalloc: 基於TrustZone 的隱私資料保 護系統★ 衛星地面網路中基於物理層安全的CSI保護方法
★ 低軌道衛星地面整合網路之安全非正交多重存取傳輸★ 低軌道衛星地面網路中的DRX機制設計
★ 衛星地面整合網路之基於集合系統的前導訊號設計★ 基於省電的低軌衛星網路路由演算法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 無線通訊技術的快速演進帶給了人們諸多好處;比如說,你可以配戴著藍芽耳機與電腦連線,再經由無線網路和朋友暢談。然而,無線通訊科技的成熟也帶來了頻譜壅塞(spectral congestion)的議題。在西元2002年,美國聯邦通訊委員會(FCC)調查顯示出有許多的頻帶未被充分的利用,且頻譜使用率會隨著時間以及地點而改變,而此變化的程度大約在15%至85%之間,因此頻譜壅塞的最主要原因乃是因為頻譜資源未被有效率的分配與應用。因此近期興起的感知無線電(Cognitive radio)即是用來解決無線頻帶缺乏(spectrum scarcity problem)的一項關鍵技術,其允許我們在不干擾合法使用者的情況下使用已被主要使用者(Primary Users)註冊的頻譜。
本論文的主要目標是在感知無線電網路之下,使用USRP N200與GNU Radio實現軟體定義無線電平台並實作兩個分散式的繞徑通訊協定,這些繞徑通訊協定特別是用來保護主要是用者的接收端。因為在感知無線電網路中,主要使用者的接收端通常很難使用簡易的方式去偵測它的存在,因此藉由此通訊協定來加強對於使用者的接收端的保護。
摘要(英) The rapid evolution of wireless communication technology has brought great benefit to our life. For example, we can chat with our friend through a Bluetooth headset connecting with a computer or a cell phone. However, the fast growth of wireless communication technologies results in spectral congestion problem. Recent studies by the Federal Communications Commission (FCC) report that many spectrum bands allocated through static assignment policies are utilized only in bounded geographic areas or over limited periods of time, and that the average utilization of such band varies between 15% and 85%. As a result, the problem is mainly due to inefficient utilization of spectrum.
Cognitive Radio is deemed as a promising technology to solve the spectral congestion problem. The spectrum resources can be fully utilized by introducing opportunistic usage of the frequency bands that are not heavily occupied by licensed users.
In cognitive radio, primary users can be defined as the users who have higher priority on the usage of a specific part of the spectrum. On the other hand, secondary users, which have lower priority, opportunistically access this spectrum and they do not cause interference to primary users. Therefore, it is essential for secondary users to have cognitive radio capabilities, such as sensing the spectrum periodically to check whether it is being used by a primary user and to modify the radio parameters to exploit the unused part of the spectrum.
In this demonstration, we considered a cognitive radio ad hoc network with distributed control. The demonstration implements a distributed CR routing protocol which provides specific protection for PU receivers that are usually not detected during spectrum sensing in CR networks, and scalable, joint route and spectrum selection. The protocol is aim to achieve a higher measure of protection for the PUs. The protection provided to the PUs results in a performance tradeoff for the CR network operation. We have chosen USRP N200 software-defined-radio platform and GNU Radio software as the platform for this CR implementation. The USRP N200 is the hardware solution for GNU Radio.
關鍵字(中) ★ 軟體定義無線電
★ 隨建即連網路
★ 感知無線電
★ 動態頻譜存取
關鍵字(英) ★ Software Defined Radio.
★ Cognitive Radio
★ Dynamic spectrum access
★ Ad Hoc Networks
論文目次 Chapter 1 Introduction................................................1
Chapter 2 Literature....................................................4
2.1 Routing Protocols in CRNs........................................4
2.2 Software Defined Radios..........................................5
2.3 GNU Radio Software.................................................7
2.4 Building Routing Protocols for SDR...........................7
Chapter 3 Experiment Testbed Setup..........................9
3.1 Hardware development environmen........................9
3.2 Software development environment......................10
3.3 CR Network Model.................................................11
3.4 System Setup..........................................................13
3.5 PHY Layer Configuration.........................................14
3.6 MAC Layer Configuration........................................15
3.7 Routing Protocols Implementation.........................16
3.8 Architecture for nodes of CRN Testbed………….……..19
3.9 Topology..................................................................21
Chapter 4 Experiment................................................25
4.1 Energy detection.....................................................25
4.2 ARQ mechanism......................................................27
4.3 YLP...........................................................................29
4.4 CRP...........................................................................33
Chapter 5 Experiment Evaluation...............................37
Chapter 6 Conclusion..................................................40
References......................................................................41
Appendix A Installing the UHD and GNU Radio.........45
Appendix B GNU Radio Companion Examples...........50
Appendix C Code overviews.......................................53
參考文獻 [1] FCC, “Spectrum Policy Task Force,” in Technical Report, 2002.
[2] GNU Radio-The GNU Software Radio. [Online]. http://www.gnuradio.org
[3] Ettus Research LLC, The USRP Product Family Products and Daughter Boards. [Online]. http://www.ettus.com
[4] K. R. Chowdhury and I. F. Akyildiz, “CRP: A Routing Protocol for Cognitive Radio Ad Hoc Networks,” IEEE Journal on Selected Areas in Communications, vol. 29, no. 4, pp. 794-804, 2011.
[5] T. Yucek and H. Arslan, “A Survey of Spectrum Sensing Algorithms for Cognitive Radio Applications,” IEEE Communications Surveys & Tutorial, vol. 11, no. 1, pp. 116–130, 2009.
[6] A. Abbagnale and F. Cuomo, “Leveraging The Algebraic Connectivity of A Cognitive Network for Routing Design,” IEEE Transactions on Mobile Computing, vol. 10, no. 2, pp. 228-238, 2010.
[7] M. Cesana, F. Cuomo, and E. Ekici, “Routing in Cognitive Radio Networks: Challenges and Solutions,” Ad Hoc Networks, vol. 9, no. 3, pp. 228 – 248, 2011.
[8] S. Huang, X. Liu, and Z. Ding, “Distributed Power Control for Cognitive User Access based on Primary Link Control Feedback,” in The Annual IEEE International Conference on Computer Communications, 2010.
[9] B. Wild and K. Ramchandran, “Detecting Primary Receivers for Cognitive Radio Applications,” in The Annual IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks, 2005.
[10] C. Xin, B. Xie, and C.C. Shen, “A Novel Layered Graph Model for Topology Formation and Routing in Dynamic Spectrum Access Networks,” in The Annual IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks, 2005.
[11] C. Xin, L. Ma, and C.C. Shen, “A Path-Centric Channel Assignment Framework for Cognitive Radio Wireless Networks,” Journal Mobile Networks and Application , vol. 13, no. 5, pp. 463–476, 2008.
[12] X. Zhou, L. Lin, J. Wang, and X. Zhang, “Cross-Layer Routing Design in Cognitive Radio Networks by Colored Multigraph Model,” Wireless Personal Communications, vol. 49, no. 1, pp. 123–131, 2009.
[13] Y. Hou, Y. Shi, and H. Sherali, “Spectrum Sharing for Multi-Hop Networking with Cognitive Radios,” IEEE Journal on Selected Areas in Communications, vol. 26, no. 1, pp. 146–155, 2008.
[14] C.W. Pyo, and M. Hasegawa, “Minimum Weight Routing Based on A Common Link Control Radio for Cognitive Wireless Ad Hoc Networks,” in The Annual IEEE International Wireless Communications and Mobile Computing Conference, 2007.
[15] M. Xie, W. Zhang, and K.K. Wong, “A Geometric Approach to Improve Spectrum Efficiency for Cognitive Relay Networks,” IEEE Transactions on Wireless Communications, vol. 9, no. 1, pp. 268–281, 2010.
[16] H. Ma, L. Zheng, X. Ma, and Y. Luo, “Spectrum Aware Routing for Multi-Hop Cognitive Radio Networks with A Single Transceiver,” in The Annual Cognitive Radio Oriented Wireless Networks and Communications, 2008.
[17] G. Cheng, W. Liu, Y. Li, and W. Cheng, “Spectrum Aware On-Demand Routing in Cognitive Radio Networks,” in The Annual IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks, 2007.
[18] G. Cheng, W. Liu, Y. Li, and W. Cheng, “Joint On-Demand Routing and Spectrum Assignment in Cognitive Radio Networks,” in The Annual IEEE International Conference on Communications, 2007.
[19] Z. Yang, G. Cheng, W. Liu, W. Yuan, and W. Cheng, “Local Coordination Based Routing and Spectrum Assignment in Multi-Hop Cognitive Radio Networks,” Journal Mobile Networks and Application, vol. 13, no. 1-2, pp. 67-81, 2008.
[20] H. Khalife, S. Ahuja, N. Malouch, and M. Krunz, “Probabilistic Path Selection in Opportunistic Cognitive Radio Networks,” in The Annual IEEE Global Telecommunications Conference, 2008.
[21] L. Ding, T. Melodia, S. Batalama, J. Matyjas, and M. Medley, “Cross-Layer Routing and Dynamic Spectrum Allocation in Cognitive Radio Ad Hoc Networks,” IEEE Transactions on Vehicular Technology, vol. 59, no. 4, pp. 1969–1979, 2010.
[22] I. Filippini, E. Ekici, and M. Cesana, “Minimum Maintenance Cost Routing in Cognitive Radio Networks,” in The Annual IEEE Mobile Ad Hoc and Sensor Systems, 2009.
[23] L. Ding, T. Melodia, S.N. Batalama, D.A. Pados, and J.D. Matyjas, “Implementation of A Distributed Joint Routing and Dynamic Spectrum Allocation Algorithm on USRP2 Radios,” in The Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, 2010.
[24] Python binding for Nokia Qt. [Online]. http://www.riverbankcomputing.co.uk.
[25] P. Cook and W. Bonser, “Architectural Overview of The Speakeasy System,” IEEE Journal on Selected Areas in Communications, vol. 17, no. 4, pp. 650–661, 1999.
[26] R. Lackey, D. Upmal, “Speakeasy: The Military Software Radio,” IEEE Communications Magazine, vol. 33, no. 5, pp. 56–61, 1995.
[27] J. Evans, G. Minden, K. Shanmugan, G. Prescott, V. Frost, B. Ewy, R. Sanchez, C. Sparks, K. Malinimohan, J. Roberts, R. Plumb, and D. Petr, “The Rapidly Deployable Radio Network,” IEEE Journal on Selected Areas in Communications, vol. 17, no. 4, pp. 689–703, 1999.
[28] V. Bose, M. Welborn, and J. Guttag, “Virtual radios,” IEEE Journal on Selected Areas in Communications, vol. 17, no. 4, pp. 591–602, 1999.
[29] JTRS, Software Communications Architecture Specification, version 2.2, November 2001. [Online]. http://jtrs.spawar.navy.mil/sca
[30] OSSIE, Open Source SCA Implementation: Embedded. [Online]. http://ossie.mprg.org
[31] M.A. Sarijari, A. Marwanto, N. Fisal, S.K.S. Yusof, R.A. Rashid, and M.H. Satria, “Energy Detection Sensing Based on GNU Radio and USRP: An Analysis Study,” in The Annual IEEE Malaysia International Conference on Communications, 2009
[32] D. Scaperoth, B. Le, T. W. Rondeau, D. Maldonado, C. W. Bostian, and S. Harrison, “Cognitive Radio Platform Development For Interoperability,” in The Annual IEEE Military Communications Conference, 2006.
[33] Yi-Li Lee, and Guey-Yun Chang, “A Protection-Based Routing Protocols for Cognitive Radio Networks”, 2012
[34] Z. Chen, N. Guo, and R. C. Qiu, “Building A Cognitive Radio Network Testbed,” in The Annual IEEE SouthEast Conference, 2011.
指導教授 張貴雲(Guey-Yun Chang) 審核日期 2012-8-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明