博碩士論文 92323023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:43 、訪客IP:3.133.144.197
姓名 蘇清源(Ching-Yuan Su)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 奈米碳管控制成長之方法研究
(Study for the controlled growth ofcarbon nanotubes)
相關論文
★ 凹形球面微電極與異形微孔的成形技術研究★ 二氧化鈦薄膜之製備與分析
★ 固態氧化物燃料電池連接板電漿鍍膜特性研究★ 碳奈米管微電極陣列之製造與性質檢測
★ 超塑性5083鋁合金快速成形空孔狀態之分析★ 微極彈性內凹結構波桑比之有限元素法分析
★ 不銹鋼微細槽放電加工及電化學拋光精修槽壁效果之研究★ 壓力容器與引流管接合處之軸對稱有限元素分析
★ 負波桑比結構之桁架有限元素法分析★ 具負波桑比性質之細胞型材料之有限元素法分析
★ 具負波桑比傘狀結構之分析與應用★ Ti-6Al-4V之超塑性成形製程模擬與分析
★ 利用微極彈性理論分析蜂巢式結構之波桑比效應★ 結合微細放電與高頻抖動研磨之微孔加工研究
★ 負波桑比機構之設計與分析★ 微雙材料熱變形樑之應用分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 奈米碳管於1991年發現以來,已經被證實具有多種獨特的材料性質,因此也被應用在許多的領域,然而如何控制奈米碳管之定位、定向及定量的成長,至今仍是奈米碳管於實際應用上的一個瓶頸。回顧過去文獻,已經有許多控制成長的方法被提出,但仍然無法提供一高良率且製程簡易之方法。因此探討奈米碳管控制成長之方法及其機制,是本論文的研究主題。
本論文提出三種定位成長奈米碳管的方法 : (1)引洞成長(CNTs growth in holes) (2)旋塗催化微粒(spin-on iron catalysts) (3)舉離法(lift-off method)。並以thermal CVD及MPCVD成長奈米碳管,探討電漿功率、成長溫度及碳源比例等參數,對奈米碳管結構及定位成長之影響。由實驗結果分析,引洞成長奈米碳管並以電子束鄰近效應縮小孔徑至0.1μm,可提高孔洞內成長單根奈米碳管之良率。此外,比較三種定位成長奈米碳管的方法,以舉離法可以定位成長高準直性且良率較高之單根奈米碳管。
而在定向成長奈米碳管的研究上,利用MPCVD之電漿鞘層所產生的自我偏壓,形成一個方向性的電場,而此電場主宰著奈米碳管成長的方向,利用此一機制可以控制奈米碳管具有方向性之成長。此外,經由實驗結果分析,在MPCVD成長奈米碳管的實驗,增加微波電漿功率可使奈米碳管的準直性及石墨化程度提高,並有較佳之場發射特性。
摘要(英) none!!
關鍵字(中) ★ 控制成長
★ 電漿鞘層
★ 場發射
★ 方向性
★ 舉離法
★ 奈米碳管
關鍵字(英) ★ plasma sheath
★ lift off method
★ CNT
★ controlled growth
★ carbon nanotube
★ orientation
★ field emission
論文目次 摘要 Ⅰ
謝誌 Ⅱ
目錄 Ⅳ
表目錄 Ⅶ
圖目錄 Ⅷ
第一章 緒論 1
1.1 前言 1
1.2 奈米碳管簡介 3
1.2.1 奈米碳管的晶體結構 3
1.2.2 奈米碳管之成長機制與合成技術 6
1.2.3 奈米碳管之獨特性質 12
1.2.4 奈米碳管的應用 15
1.3 文獻回顧 19
1.4 研究動機與目的 22
第二章 實驗方法與原理 23
2.1 實驗架構 24
2.2 實驗儀器 25
2.2.1 製程設備 25
2.2.2 分析設備 30
2.2.3 實驗材料選擇 33
2.3 利用電子束微影定義孔洞圖案 34
2.3.1 電子束微影技術之原理 34
2.3.2 利用電子束鄰近效應縮小圖案尺寸 38
2.4 單因子實驗方法 40
2.5 電漿鞘層之形成 41
第三章 結果與討論 42
3.1 引洞定位成長奈米碳管 42
3.1.1 試片準備與製程方法 42
3.1.2 溫度及碳源比例對奈米碳管之影響 46
3.1.3 成長單根碳管之最佳參數控制 50
3.2 利用電子束鄰近效應縮小孔徑之製程改善 52
3.2.1 電子束微影之光罩設計 52
3.2.2 試片準備與製程方法 54
3.2.3 成長溫度及碳源比例對奈米碳管結構之影響 57
3.2.4孔徑對成長單根奈米碳管之影響 58
3.3 旋塗催化微粒控制成長奈米碳管 59
3.3.1 試片準備與製程方法 59
3.3.2 電漿功率及成長溫度對奈米碳管直徑之影響 60
3.3.3 旋轉塗佈改善孔洞外催化微粒之分佈 69
3.4 舉離法定位成長奈米碳管 70
3.4.1 試片準備與製程方法 70
3.4.2 定位成長單根碳管之機制 73
3.5 電漿功率對奈米碳管特性之影響 75
3.5.1 試片準備及製程方法 75
3.5.2 電漿功率對奈米碳管準直性之影響 77
3.5.3 電漿功率對奈米碳管石墨化程度之影響 79
3.5.4電漿功率對奈米碳管場發射特性之影響 82
3.6 電漿鞘層對奈米碳管成長之影響 84
3.6.1電漿鞘層對奈米碳管方向性成長之影響 84
3.6.2 控制奈米碳管方向性成長之方法研究 88
第四章 結論 90
參考文獻 91
作者簡介 100
參考文獻 [1] S. Iijima, “Helical microtubules of graphitic carbon” ,Nature, 354 (1991) 56.
[2] E. W. Wong, P. E. Sheehan, C. M. Lieber, “Nanobeam mechanics : elasticity, strength, and toughness of nanorods and nanotubes” ,Science, 277 (1997) 1971.
[3] M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, R. S. Ruoff, “Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load” ,Science, 287 (2000) 637.
[4] M. F. Yu, B. S. Files, S. Arepalli, R. S. Ruoff, “Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties” , Physical Review Letters, 84 (2000) 5552.
[5] J. Z. Liu, Q. S. Zheng, L. F. Wang, Q. Jiang, “Mechanical properties of single-walled carbon nanotube as bulk materials” ,Journal of Mechanics and Physics of solids, 53 (2005) 123.
[6] K. B. K. Teo, C. Singh, M. Chhowalla, W. I. Milne, “Catalytic synthesis of carbon nanotubes and nanofibers” ,Encyclopedia of Nanoscience and Nanotechnology, (2003) 1.
[7] F. Kreupl, A. P. Graham, G. S. Duesberg, W. Steinhogl, M. Liebau, E. Unger, W. Honlein, “Carbon nanotube in interconnect applications” ,Microelectrinic Engineering, 64 (2002) 399.
[8] J. Guo, M. Lundstrom, S. Datta, “Performance projections for ballistic carbon nanotube field-effect transistors ” ,Applied Physics Letters, 80 (2002) 3192.
[9] S. J. Wind, J. Appenzeller, R. Martel, V. Derycke, Ph. Avouris, “Vertical scaling of carbon nanotube field-effect transistors using top gate electrode” ,Applied Physics Letters, 80 (2002) 3817.
[10] Y. Zhang, A. Chang, J. Cao, Q. Wang, W. Kim, Y. Li, N. Morris, E. Yenilmez, J. Kong, H. Dai, “Electric-field-directed growth of aligned single-walled carbon nanotube” ,Applied Physics Letters, 79 (2001) 3155.
[11] A. Jacey, J. Guo, D. B. Farmer, Q. Wang, R. G. Gordon, M. Lundstrom, H. Dai, “Carbon nanotube field-effect transistors with integrated ohmic contacts and high-k gate dielectrics ” ,Nano Letters, 4 (2004) 447.
[12] K. Tsukagoshi, N. Yoneya, S. Uryu, Y. Aoyagi, A. Kanda, Y. Ootuka, B. W. Alphenaar, “Carbon nanotube devices for nanoelectronics” ,Physics B, 323 (2002) 107.
[13] S. B. Lee, K. B. K. Teo, M. Chhowalla, D. G. Hasko, G. A. J. Amaratunga, W. I. Milne, H. Ahmed, “Study of muti-walled carbon nanotube structures fabricated by PMMA suspended dispersion” ,Microelectronic Engineering, 61-62 (2002) 475.
[14] K. B. K. Teo et al. “Carbon nanotube technology for solid state and vacuum electronics” ,IEE Proc.-Circuits Devices Syst., (2004) 408.
[15] A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, and M. J. Heben, “Storage of hydrogen in single-walled carbon nanotubes” ,Nature, 386 (1997) 377.
[16] H. M. Cheng, Q. H. Yang, and C. Liu, “Hydrogen storage in carbon nanotubes” ,Carbon, 39 (2001) 1447.
[17] A. K. M. F. Kibria, Y. H. Mo, K. S. Park, K. S. Nahm, and M. H. Yun, “Electrochemical hydrogen storage behaviors of CVD, AD and LA grown carbon nanotubes in KOH medium” ,International Journal of Hydrogen Energy, 26 (2001) 823.
[18] G. E. Froudakis, “Why alkali-metal-doped carbon nanotubes possess high hydrogen uptake” ,Nano Letters, 1 (2001) 531.
[19] Z. Dehouche, L. Lafi, N. Grimard, J. Goyette, R. Chahine, “The catalytic effect of single-wall carbon nanotubes on the hydrogen sorption properties of sodium alanates ” ,Nanotechnology, 16 (2005) 402.
[20] A. Star, J. C. P. Gabriel, K. Bradley, G. Gruner, “Electronic detection of specific protein binding using nanotube FET devices” ,Nano Letters, 3 (2003) 459.
[21] T. Someya, J. Small, P. Kim, C. Nuckolls, J. T. Yardley, “Alcohol vapor sensors based on single-walled carbon nanotube field effect transistors” ,Nano Letters, 3 (2003) 877.
[22] S. Sotiropoulou, N. A. Chaniotakis, “Carbon nanotube array-based biosensor” ,Anal. Bioanal Chem., 375 (2003) 103.
[23] J. P. Novak, E. S. Snow, E. J. Houser, D. Park, J. L. Stepnowski, R. A. McGill, “Nerve agent detection using networks of single-walled carbon nanotubes” ,Applied Physics Letter, 83 (2003) 4026.
[24] J. Li, Y. Lu, Q. Ye, M. Cinke, J. Han, M. Meyyappan, “Carbon nanotubes sensors for gas and organic vapor detection” ,Nano Letters, 3 (2003) 929.
[25] J. Chung, K. H. Lee, J. Lee, “Multi-walled carbon nanotube sensors”, Solid-State Sensor, Actuator, and Microsystems Workshop, Boston, (2003) 718.
[26] J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, H. Dai, “Nanotube molecular wires as chemical sensors“ ,Science, 287 (2000) 622.
[27] Y. T. Jang, C. H. Choi, S. I. Moon, J. H. Ahn, Y. H. Lee, B. K. Ju,”A novel micro-gas sensor using laterally grown carbon nanotube”, Solid-State Sensor, Actuator, and Microsystems Workshop, Boston, (2003) 1363.
[28] S. Chopra, K. McGuire, N. Gothard, A. M. Rao, ”Selective gas detection using a carbon nanotube sensor” ,Applied Physics Letter, 83 (2003) 2280.
[29] S. G. Wang, R. Wang, P.J. Sellin, Q. Zhang, “DNA biosensors based on self-assembled carbon nanotubes”, Biochemical and Biophysical Research Communication, 235 (2004) 1433.
[30] J. Li, H. T. Ng, A. Cassell, W. Fan, H. Chen, Q. Ye, J. Koehne, J. Han, M. Meyyappan, “Carbon nanotube nanoelectrode array for ultrasensitive DNA detection” ,Nano Letters, 3 (2003) 597.
[31] G. Li, J. M. Liao, G. O. Hu, N. Z. Ma, P. J. Wu, “Study of carbon nanotube modified biosensor for monitoring total cholesterol in blood ” , Biosensors and Bioelectronics, 20 (2005) 2140.
[32] T. S. Huang, Y. Tzeng, Y. K. Liu, Y. C. Chen, K. R. Walker, R. Guntupalli, C. Liu,”Immobilization of antibodies and bacterial binding on nanodiamond and carbon nanotubes for biosensor applications”, Diamond and Related Material, 13 (2004) 1098.
[33] J. Koehne, J. Li, A. M. Cassell, H. Chen, Q. Ye, H. T. Ng, J. Han, M. Meyyappan, “The fabrication and electrochemical characterization of carbon nanotube nanoelectrode arrays”, Journal of Materials Chemistry, 14 (2004) 676.
[34] J. N. Wohlstadter et al. “Carbon nanotube-based biosensor”, Advanced Materials, 15 (2003) 1184.
[35] Y. Tzeng, Y. Chen, N. Sathitsuksanoh, C. Liu, “Electrochemical behaviors and hydration properties of multi-wall carbon nanotube coated electrodes in water” ,Diamond and Related Materials, 13 (2004) 1281.
[36] P. He, L. Dai, “Aligned carbon nanotube-DNA electrochemical sensors” , Chem. Commun., (2004) 348.
[37] Q. L. Chen, K. H. Xue, W. Shen, F. F. Tao, S. Y. Yin, W. Xu, “Fabrication and electrochemical properties of carbon nanotube array electrode for supercapacitors” ,Electrochimica Acta, (2004).
[38] J. J. Gooding, “Nanostruturing electrodes with carbon nanotubes :A review on electrochemistry and applications for sensing” , Electrochimica Acta, 50 (2005) 3049.
[39] R. K. Gupta, I. Dwivedy, ”International patenting activity in the field of carbon nanotubes ” ,Current Applied physics, 5 (2005) 163.
[40] Y. Cheng, O. Zhou, “Electron field emission from carbon nanotubes” , C. R. Physique, 4 (2003) 1021.
[41] J. A. Misewich, R. Matel, P. Avouris, J. C. Tsang, S. Heinze, J. Tersoff, “Electrically induced optical emission from a carbon nanotune FET ” , Science, 300 (2003) 783.
[42] P. Poncharal, Z. L. Wang, D. Ugarte, W. A. de Heer, “Electrostatic deflections and electromechanical resonances of carbon nanotubes” , Science, 283 (1999) 1513.
[43] A. M. Fennimore, T. D. Yuzvinsky, W. Q. Han, M. S. Fuhrer, J. Cumings, A. Zetti, “Rotational actuators based on carbon nanotubes” , Nature, 424 (2003) 408.
[44] S. Frank, P. Poncharal, Z. L. Wang, W. A. de Heer, “Carbon nanotube quantum resistor” ,Science, 280 (1998) 1744.
[45] S. Roth, V. Krstic, G. L. J. A. Rikken, “Quantum transport in carbon nanotubes” ,Current Applied physic, 2 (2002) 155.
[46] T. Ando, H. Matsumura, T. Nakanishi, “Theory of ballistic transport in carbon nanotubes” ,Physica B, 323 (2002) 44.
[47] G. S. Duesberg, A. P. Graham, F. Kreupl, M. Liebau, R. Seidel, E. Unger, W. Hoenlein, “Ways towards the scaleable integration of carbon nanotubes into silicon based technology” ,Diamond and Related Materials, 13 (2004) 254.
[48] R. T. K. Baker, R. J. Waite, “Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene” ,Journal of catalysis, 26 (1972) 51.
[49] G. G. Tibbetts et al., “Vapor-grown carbon fibers: status and prospectus” ,Carbon, 27 (1989) 745.
[50] S. Helveg, G. L. Cartes, J. Sehested, P. L. Hansen, B. S. Clausen, J. R. R. Nielsen, F. A. Pedersen, J. K. Norskov, “Atomic-scale imaging of carbon nanofiber growth” ,Nature, 427 (2004) 426.
[51] Eikos Technology Co. 網頁圖片, 網頁網址http://www.eikos.com/ advantages.html
[52] 匈亞利Eötvös 大學KÜRTI研究團隊網上圖片,網址http://virag. elte.hu/~kurti/science.html
[53] 密西根科技大學奈米科技教育網頁圖片,網址http://nano. mtu.edu/Nanotubes.htm
[54] 美國PhysicWeb網頁圖片, 網頁網址http://physicsweb.org/articles/ world/11/1/9/1/world-11-1-9-1
[55] B. Yakobson, R. Smalley, “Fullerene nanotubes: C_1000000 and beyond” ,American Scientist, 85 (1997) 324.
[56] T. W. Odom, J. L. Huang, P. Kim, C. M. Lieber, “Atomic structure and electronic properties of single-walled carbon nanotubes” ,Nature, 391 (1998) 62.
[57]日本Nanoelectronics 網頁圖片,網頁網址 http://www.nano electronics.jp/kaitai/nanotube/applcircuit.htm
[58] Proceeding of Meeting of the International Technology Roadmap for Semiconductors ( ITRS ) , December 2002
[59] R. Martel, T. Schmidt, H. R. Shea, T. Hertel, Ph. Avouris, “Single- and multi-wall carbon nanotube field-effect transistor” ,Applied Physics Letters, 73 (1998) 2447.
[60] V. Derycke, R. Martel, J. Appenzeller, Ph. Avouris, “Carbon nanotube inter- and intramolecular logic gates” ,Nano Letter, 9 (2001) 453.
[61] W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, J. M. Kim, “Fully sealed, high-brightness carbon-nanotube field-emission display” ,Applied Physics Letters, 75 (1999) 3129.
[62] G. Z. Yue, Q. Qiu, B. Gao, Y. Cheng, J. Zhang, H. Shimoda, S. Chang, J. P. Lu, O. Zhou, “Generation of continuous and pulsed diagnostic imaging x-ray radiation using a carbon-nanotube-based field-emission cathode” ,Applied Physics Letters, 81 (2002) 355.
[63] W. I. Milne, K. B. K. Teo, G. A. J. Amaratunga, P. Legagneux, L. Gangloff, J. P. Schnell, V. Semet, V. Thien, Binh, O. Groening, “Carbon nanotubes as field emission sources” ,Journal of Materials Chemistry, 14 (2004) 1.
[64] M. S. Dresselhaus, G. Dresselhaus, R. Saito, “Physics of carbon
nanotubes“ ,Carbon, 33 (1995) 883.
[65] J. S. Suh, K. S. Jeong, J. S. Lee, Intaek Han, “Study of the field- screening effect of highly ordered carbon nanotube arrays” Applied Physics Letters, 80 (2002) 2392.
[66] Georg S. Duesberg et al. “Growth of isolated carbon nanotubes with lithographically defined diameter and location” ,Nano Letters, 3 (2003) 257.
[67] Z. F. Ren, Z. P. Huang, D. Z. Wang, J. G. Wen, “Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot ” ,Applied Physics Letters, 75 (1999) 1086.
[68] K. B. K. Teo, M. Chhowalla, G. A. J. Amatatunga, W. I. Milne, ”Uniform patterned growth of carbon nanotubes without surface carbon” ,Applied Physics Letters, 79 (2001) 1534.
[69] V. Semet, Vu Thien Binh, P. Vincent, D. Guillot, ”Field electron emission from carbon nantubes of a vertically aligned array” ,Applied Physics Letters, 81 (2002) 343.
[70] K. B. K. Teo et al. ”Plasma enhanced chemical vapour deposition carbon nanotube/nanofibers–how uniform do they grow?” ,Nano- technology, 14 (2003) 204.
[71] X. Yang et al. ”Fabrication and characterization of carbon nanofiber - based vertically integrated schottky barrier junction diodes” ,
Nano Letters, 3 (2003) 1751.
[72] R. E. Morjan, M. S. Kabir, S. W. Lee, O. A. Nerushev, P. Lundgren, S. Bengtsson, Y. W. Park, E. E. B. Campbell, ”Selective growth of individual multiwalled carbon nanotubes” ,Current Applied Physics (2004).
[73] D. H. Kim, D. S. Cho, H. S. Jang, C. D. Kim, H. R. Lee, “The growth of freestanding single carbon nanotube arrays” ,Nanotechnology, 14 (2003) 1269.
[74] Y. Zhang, Aileen Chang, J. Cao, Q. Wang, W. Kim, Y. Li, Nathan Morris, Erhan Yenilmez, J. Kong, H. Dai, “Electric-field-directed growth of aligned single-walled carbon nanotubes” ,Applied Physics Letters, 79 (2001) 3115.
[75] C. Bower. et al. “Plasma-induced alignment carbon nanotubes” , Applied Physics Letters, 77 (2000) 830.
[76] J. G. Wen. et al. “Growth and characterization of aligned carbon nanotubes from patterned nickel nanodots and uniform thin films.” ,Journel Materials Research, 1610(2001) 3246.
[77] C. C. Lin, I. C. Leu, J. H. Yen, M. H. Hon, ”Sheath-dependent oreientation control of carbon nanofibers and carbon nanotubes during plasma-enhanced chemical deposition ” ,Nanotechnology 15 (2004) 176.
[78] 邱燦賓,施敏,”電子束微影技術”,科學發展月刊第二十八卷第六期(2000) 423。
[79] 羅正忠,張鼎張,”半導體製程技術導論”,台灣培生教育出版有限公司,第二版 (2004) 236。
[80] J. Li, F. Banhart, “The engineering of hot carbon nanotubes with a focused electron beam” ,Nano Letters, 4 (2004) 114.
[81] 陳紹良,以微波化學氣相沉積法成長奈米碳管之研究,國立中央大學碩士論文,2003。
指導教授 黃豐元(Fuang-Yuan Huang) 審核日期 2005-7-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明