博碩士論文 92326011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:50 、訪客IP:3.138.114.94
姓名 徐偉峻(Wei-Chun Hsu)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 臭氧去除超濾薄膜積垢之研究
(Fouling Removal from Ultrafiltration Membrane by Ozonation)
相關論文
★ 石油碳氫化合物污染場址健康風險評估之研究★ 混合式厭氧反應槽之效能探討
★ 新型改質矽藻土應用於吸附實廠含銅廢水之探討★ 焚化底渣特性及其再利用管理系統之研究
★ 焚化底渣水洗所衍生廢水特性及處理可行性研究★ 工業廢水污泥灰渣特性及其再利用於水泥砂漿之研究
★ 純氧活性污泥法處理綜合性工業廢水之研究★ 零價鐵技術袪除三氯乙烯之研究
★ 零價鐵反應牆處理三氯乙烯污染物之反應行為研究★ 預臭氧程序提升綜合性工業廢水生物可分解性之研究
★ 下水污泥灰渣應用於銅離子去除之初步探討★ 纖維材料對於污泥灰渣砂漿工程性質之影響
★ 纖維床生物反應器祛除甲苯與三氯乙烯之研究★ 下水污泥灰渣特性及應用於水泥 砂漿之研究
★ 以Microtox檢測方法評估實際廢水生物毒性之研究★ 化學置換程序回收氯化銅蝕刻廢液之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以工業區綜合污水處理廠之三級處理水為對象,探討以抗臭氧氧化之超濾(UF)(polyvinylidene fluoride, PVDF)薄膜處理時,膜面之積垢程度及種類,並以臭氧去除UF膜面積垢之方法與可行性。研究內容,首先探討三級處理水之水質特性,以評估薄膜積垢之程度及種類,並建立UF薄膜初始通量、本身阻抗及孔隙大小等薄膜基本特性。最後藉由實驗室薄膜系統模組之批次實驗,探討進流水預臭氧化、臭氧加入進流水及臭氧加入反洗水,三種不同的臭氧除垢方式,對臭氧去除薄膜積垢之影響,提供實廠操作之參考。
研究結果顯示,工業區綜合污水處理廠三級處理水,經5μm預濾後,再經UF過濾前後水質發現,UF對於鐵、錳及SDI去除率分別為62%、30%及88%;而膜面積垢之FTIR分析結果顯示,主要組成之有機官能基,為染料發色團及助色團中的芳香族化合物,及少數直鏈化合物,因此可知以三級處理水為UF飼水時,可能造成膠體積垢及有機積垢。
由薄膜系統進流水預臭氧化實驗發現,預臭氧能改善三級處理水及UF滲透液水質,臭氧氣相質量流率控制在13.99 mg/min下,隨著預臭氧時間的增加,水質改善及UF過濾效果也跟著增加,在預臭氧4分鐘,三級處理水及UF滲透液中鐵的去除率,分別為62%及100%,平均粒徑也分別由682 nm降至380 nm及400 nm降至280 nm,滲透液通量能由初始通量的60%增加至80%。然而,接著預臭氧時間再增加,水質及過濾效果反而下降。
由臭氧加入薄膜系統進流水實驗結果發現,若薄膜阻塞後,再於進流水中添加臭氧,僅能將滲透液通量由初始的60%提升至80%,但是,若在進流水中持續添加臭氧,則能將滲透液通量,維持在約初始通量的90%。因此,持續添加臭氧於進流水,可有效減緩薄膜積垢。而由臭氧加入薄膜系統反洗水實驗發現,連續過濾反洗120分鐘後,滲透液通量也可維持在初始通量的90%。上述三種不同的臭氧除垢方式中,以臭氧持續加入進流水及反洗水,為減緩薄膜積垢之較適操作方式。
整體而言,由三級處理水預臭氧前後之粒徑分佈結果可知,造成滲透液通量提升之原因為分子降解及顆粒去穩定化。此外,臭氧加入後會增加水中含氧官能基,進而增加三級處理水之極性,而PVDF材質薄膜為一疏水性薄膜,因此可減低疏水性物質吸附於膜面之程度。而由臭氧加入進流水前後FTIR分析結果可知,臭氧去除有機積垢之機制主要為芳香族化合物環狀結構的破壞及大分子有機物的斷鍵。臭氧去除無機結垢之機制主要為有機物被臭氧氧化形成的官能基與水中之陽離子錯合,增加結垢物種的溶解度。
摘要(英) The objectives of this study are aimed to investigate the degree and kind of membrane fouling formed from the ultrafiltration (UF) of the tertiary treatment water in an industrial park, and to evaluate the feasibility of removing membrane fouling by ozone. The material of membrane used in the experiments was polyvinylidene fluoride (PVDF), as it could resist the corrosion of ozone. In order to assess the degree and kind of membrane fouling, the first step was to investigate the water quality characteristic of the tertiary treatment water and then set up the basic characteristics of the membrane, such as the initial permeate flux, the membrane resistance, and the pore size of UF membrane. In order to offer the reference for the real factory operation, a bench-scale membrane system was performed in the experiments to evaluate the fouling removed by three kinds of different ozonation, such as influent preozonation, ozone in-line dosing and ozone backwashing.
Experimental results showed that the removal efficiency of iron, manganese and SDI was 62%, 30% and 88%, respectively, after the 5µm prefiltration and UF without ozone. From the FTIR analysis of membrane fouling, results showed that the organic functional groups were aromatic rings and a few linear chain compounds of chromophore and auxochrome in dyestuff. So the tertiary treatment water may induce the colloidal fouling and organic fouling in the UF system. Experimental results also showed that preozonation could improve the tertiary treatment water and UF permeate quality. When the time of preozonation was increased more, improvement of water quality and effect of UF were enhanced more. When the ozone gas mass flow rate was 13.99 mg/min and the time for preozonation was 4 minutes, the removal efficiency of iron in the tertiary treatment water and the UF permeate was 62% and 100%, and meanwhile, the average particle size of the former decreased from 682nm to 380nm and the latter decreased from 400nm to 280nm, and the permeate flux increased from 60% to 80% of the initial flux, respectively. However, when increasing the preozonation time more, the water quality and the effect of filter were worse.
It was observed that when injecting into influent by ozone after blocked of the membrane, the permeate flux only increased from 60% to 80% of the initial flux. But, it was observed that when injecting into influent by ozone continuously, the permeate flux could maintained to 90% of the initial flux. It is demonstrated that the effect of the former is better than the latter. It was also observed that the permeate flux still maintained to 90% of initial permeate flux about 120 minutes from the beginning by ozone backwashing. According the above investigation, ozone in-line dosing and ozone backwashing are more suitable for inhibiting the membrane fouling.
On the whole, the reason why the permeate flux could be increased within ozonation were the molecular degradation and the particle destabilization. Moreover, ozonation could produce the oxygenated functional groups and increase hydrophile of tertiary treatment water. Because PVDF material was a hydrophobic membrane, so it could reduce the hydrophobic matter absorbed on the membrane surface. Comparing the FTIR analysis of fouling without and with ozone, the removal mechanism of organic fouling with ozonation was the destruction of aromatic ring and the breaking of macromolecule organic matters. The removal mechanism of inorganic fouling was also the ozonation of organic matter. The ozonation might produce the oxygenated functional groups that might couple with cations to form complexes and increase the solubility of scaling matters.
關鍵字(中) ★ 三級處理水
★ 超濾
★ 薄膜積垢
★ 臭氧
★ 結垢
關鍵字(英) ★ ultrafiltration
★ membrane fouling
★ scaling
★ ozone
★ tertiary treatment water
論文目次 目錄 Ι
圖目錄 Ⅲ
表目錄 Ⅵ
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的與內容 2
第二章 文獻回顧 4
2-1 薄膜種類與過濾機制 4
2-2 UF薄膜的應用 8
2-3 濃度極化 9
2-4 薄膜積垢 11
2-5 薄膜積垢指標及其評估方式 14
2-6 薄膜積垢控制方法 16
2-7 臭氧反應之作用機制 17
2-8 臭氧應用在薄膜程序 26
第三章 研究方法 30
3-1 研究流程 30
3-2 實驗裝置 33
3-3 實驗設計與操作方法 37
3-4 實驗設備 40
3-5 實驗材料 42
3-6 分析方法 43
第四章 結果與討論 50
4-1 原廢水水質特性 50
4-2 薄膜特性資料 56
4-2-1 薄膜初始通量 56
4-2-2 薄膜本身阻抗 57
4-2-3 薄膜孔隙大小 58
4-3 薄膜積垢組成及形成機制 59
4-3-1 UF對三級處理水之影響 59
4-3-2 以三級處理水為UF飼水之過濾情形 64
4-3-3 UF薄膜之各阻抗比較 67
4-3-4 膜面積垢精密儀器分析 70
4-4 不同臭氧除垢方式去除薄膜積垢之探討 77
4-4-1 薄膜系統進流水預臭氧化 77
4-4-2 臭氧加入薄膜系統進流水 93
4-4-3 臭氧加入薄膜系統反洗水 110
4-5 綜合討論 116
4-5-1 不同臭氧除垢方式對UF滲透液通量之影響 116
4-5-2 不同臭氧除垢方式對UF滲透液水質之影響 117
第五章 結論與建議 119
5-1 結論 119
5-2 建議 120
參考文獻 121
附錄A 檢量線 附A-1
附錄B 實驗原始數據 附B-1
參考文獻 1.Ahn, K. H., H. Y. Cha, I. T. Yeom and K. G. Song, “Application of Nanofiltration for Recycling of Paper Regeneration Wastewater and Characterization of Filtration Resistance,” Desalination, Vol.119, pp.169-176 (1998).
2.Airey, D., S. Yao, J. Wu, V. Chen, A. G. Fane and J. M. Pope, “An Investigation of Concentration Polarization Phenomena in Membrane Filtration of Colloidal Silica Suspensions by NMR Micro-imaging,” Journal of Membrane Science, Vol.145, pp.145-158 (1998).
3.Allison, R. P., “Electrodialysis Reversal in Water Reuse Applications,” Desalination, Vol.103, pp.11-18 (1995).
4.Aptel, P. and C. A. Buckley, ”Water Treatment Membrane Process,” McGraw-Hill, Singapore (1996).
5.Baker, J. S. and L.Y. Dudley, “Biofouling in Membrane Systems–a Review,” Desalination, Vol.118, pp.81-90 (1998).
6.Barker, D. J. and D. C. Stuckey, “A Review of Soluble Microbial Products in Wastewater Treatment Systems,” Water Research, Vol.33, pp.3063-3082 (1999).
7.Benkahla, Y. K., A. O. Dris, M. Y. Jaffrin and D. S. Hassen, “Cake Growth Membrane in Cross-flow Microfiltration of Mineral Suspensions,” Journal of Membrane Science, Vol.98, pp.107-117 (1995).
8.Berthold, G. and K. Karlheinz, “Replacement of Secondary Clarification by Membrane Separation-Results with Tubular, Plate and Hollow Fibre Modules,” Water Science & Technology, Vol.40, pp.311-320 (1999).
9.Boerlage, S., M. Kennedy, A. B. Paul, G. Galjaard and J. Schippers, “Prediction of Flux Decline in Membrane Systems due to Particulate Fouling,” Desalination, Vol.113, pp.231-233 (1997).
10.Bowen, W. R., J. I. Calvo and A. Hernandez, “Steps of Membrane Blocking in Flux Decline During Protein Microfiltration,” Journal of Membrane Science, Vol.101, pp.153-165 (1995).
11.Bruggen, B. V., L. Braeken and C. Vendecasteele, “Evaluation of Parameters Describing Flux Decline in Nanofiltration of Aqueous Solutions Containing Orangic Compounds,” Desalination, Vol.147, pp.281-288 (2002).
12.Buckleyo, C. A. and E. H. Quentin, “Membrane Application: A Contaminant-Based Perspective,” Water Treatment Membrane Process, McGraw-Hill, Singapore (1996).
13.Camel, V. and A. Bermond, “The Use Ozone and Associated Oxidation Processes in Drinking Water Treatment,” Water Research, Vol.32, pp.3208-3222 (1998).
14.Chandrakanth, M. S. and G. L. Amy, “Effect of Ozone on the Colloidal Stability and Aggregation of Particles Coated with Nature Organic Matter,” Environmental Science & Technology, Vol.30, pp.431-443 (1996).
15.Chang, I. S., C. M. Chung and S. H. Han, “Treatment of Oily Wastewater by Ultrafiltration and Ozone,” Desalination, Vol.133, pp.225-232 (2001).
16.Chang, S. D. and P. C. Singer,“The Impact of Ozone on Particle Stability and the Removal of TOC and THM Precursors,” , Journal American Water Works Association, Vol.83, pp.71-79 (1991).
17.Chen, K. C. and S. J. Masten, “Effect of Ozonation-Ultrafiltration on Membrane Fouling and Water Quality,” 第二十九屆廢水處理技術研討會論文集,第1-20頁,台南(2004)。
18.Cheryan, M., “Ultrafiltration and Microfiltration Handbook”, Technomic Publishing Company, Lancaster (1998).
19.Cho, J., G. Amy, J. Pellegrino and Y. Yoon, “Characterization of Clean and Natural Organic Matter (NOM) Fouled NF and UF Membranes, and Foulants Characterization,” Desalination, Vol.118, pp.101-108 (1998).
20.Coppenger, G. D., B. R. Crocker and D. E. Wheeler, “Ozone Treatment of Cooling Water,” Ozone Science & Engineering, Vol.13, pp.375-396 (1991).
21.Dowbiggin, W. B. and O. C. Singer, “Effect of Nature Organic Matter and Calcium on Ozone-induced Particle Destabilization,” Journal American Water Works Association, Vol.81, pp.77-85 (1989).
22.Durham, B. and A. Walton, “Membrane Pretreatment of Reverse Osmosis: Long-Term Experience on Difficult Waters,” Desalination, Vol.122, pp.157-170 (1999).
23.Ernst, M. and M. Jekel, “Advanced Treatment Combination for Groundwater Recharge of Municipal Wastewater by Nanafiltration and Ozonation,” Water Science & Technology, Vol.40, pp.277-284 (1999).
24.Ferguson, D. W., J. T. Gramith and, M. J. McGuire, “Applying Ozone for Organics Control and Disinfection: A Utility Perspective,” Journal American Water Works Association, Vol.83, pp.32-39 (1991).
25.Field, R. W., D. Wu, J. A. Howell and B. B. Gupta, “Critical Flux Concept for Microfiltration Fouling,” Journal of Membrane Science, Vol.100, pp.259-272 (1995).
26.Gunten, U. V., A. Bruchet and E. Costentin, “Bromate Formation in Advanced Oxidation Processes,” Journal American Water Works Association, Vol.88, PP.53-65 (1996).
27.Hoigne, J., “Chemistry of Aqueous Ozone and Transformation of Pollutants by Ozonation and Advanced Oxidation Processes,” The Handbook of Environmental Chemistry, Vol.5 Part C. Springer-Verlag Berlin Heidelberg (1998).
28.Howell, J. A., “Sub-critical Flux Operation of Microfiltration,” Journal of Membrane Science, Vol.107, pp.165-171 (1995).
29.Jacangelo, J. G., C. Shankararaman and R. R. Trussell, “Membrane Treatment,” Civil Engineering, Vol.68, pp.42-45 (1998).
30.Jarusutthirak, C., G. Amy and J.-P. Croué, “Fouling Characteristics of Wastewater Effluent Organic Matter (EfOM) Isolates on NF and UF Membranes,” Desalination, Vol.145, pp.247-255 (2002).
31.Jekel, M. R., “Effect and Mechanisms Involved in Preoxidation and Particle Separation Processes,” Water Science & Technology, Vol.37, pp.1-7 (1998).
32.Juang, R. S., “Removal of Copper(Ⅱ) Chelates of EDTA and NTA from Dilute Aqueous Solution by Membrane Filtration,” Industrial & Engineering Chemistry Research, Vol.36, pp179-186 (1997).
33.Karnik, B. S., S. H. R. Davies, K. C. Chan, D. R. Jaglowski, M. J. Baumann and S. J. Masten, “Effect of Ozonation on the Permeate Flux of Nanocrystalline Ceramic Membrane,” Water Research, Vol.39, pp.728-734 (2005).
34.Kaur, K., T. R. Bott and B. S. C. Leadbeater, “Effect of Ozone as a Biocide in an Experimental Cooling Water System,” Ozone Science & Engineering, Vol.14, pp.517-530 (1992).
35.Kim, J. G., A. E. Yousef and S. Dave, “Application of Ozone for Enhancing the Microbiological Safety and Quality of Foods: A Review,” Journal of Food Engineering, Vol.62, pp.1071-1087 (1999).
36.Kim, J. O., E. B. Shin, W. Bae, S. K. Kim and R. H. Kim, “Effect of Intermittent Back Ozonation for Membrane Fouling Reduction in Microfiltration Using a Metal Membrane,” Desalination, Vol.143, pp.269-278 (2002).
37.Laine, J. M. and C. Anselme, “Ultrafiltration Technology Status Overview in Municipal Drinking Water,” 20th Congress IWSA Conference, Durban (1995).
38.Laine, J. M., M. M. Clark and J. Mallevialle, “Ultrafiltration of Lake Waters: Effect of Pretratment on the Partitioning of Organics, THMFP, and Flux,” Journal American Water Works Association, Vol.82, pp.82-87 (1990).
39.Langlais, B., Reckhow, D. A. and Brink, D. B., “Ozone in Water Treatment-Application and Engineering,” Lewis Publishers (1991).
40.Lee, S., N. Jang and Y. Watanabe, “Effect of Residual Ozone on Membrane Fouling Reduction in Ozone resisting Microfiltration(MF) membrane System,” Water Science & Technology, Vol.50, pp.287-292 (2004).
41.Lefebre, E., H. Paillard and B. Legube, “The Effect of Ozonation on the Removal of Organics by Coagulation-flocculation,” Ozone Science & Engineering, Vol.12, pp.295-313 (1990).
42.Lin C. F., Y. J. Huang, and O. J. Hao, “Ultrafiltration Processes for Removing Humic Substances: Effect of Molecular Weight Fractions and Pac Treatment,” Water Research, Vol.33, pp.1252-1264 (1999).
43.Lopez, A. G., G. Mascolo, G. Tiravanti, A. C. D. Pinto and R. Passino, “Biodegradability Enhancement of Refractory Pollutants by Ozonation: a Laboratory Investigation on an Azo-Dyez Intermediate,” Water Science & Technology, Vol.38, pp.239-345 (1998).
44.Lopez, A., G. Ricco, R. Ciannerarella, A. Rozzi, A. C. Dipinto and R. Passino, “Textile Wastewater Reuse: Ozonation of Membrane Concentrated Secondary Effluent,” Water Science & Technology, Vol.40, pp.99-105 (1999).
45.Madireddi, K., R. B. Babcock, B. Levine, J. H. Kim and M. K. Stenstrom, “An Unsteady-state Model to Predict Concentration Polarization in Commercial Spiral Wound Membranes,” Journal of Membrane Science, Vol.157, pp.13-34 (1999).
46.Marchese, J., M. Ponce, N. A. Ochoa, P. Pradanos, L. Palacio and A. Hernandez, “Fouling Behaviour of Polyethersulfone UF Membranes Made with Different PVP,” Journal of Membrane Science, Vol.211, pp.1-11 (2003).
47.Matsuura, T., “Progress in Membrane Science and Technology for Seawater Desalination-a Review,” Desalination, Vol.134, pp.47-54 (2001).
48.Mori, Y., T. Oota, M. Hashino, M. Takamura and Y. Fujii, “Ozone-microfiltration System,” Desalination, Vol.117, pp.211-218 (1998).
49.Munir, C., “Ultrafiltration and Microfiltration Handbook,” Technomic, Lancaster (1998).
50.Nakatsuka, S., I. Nakate and T. Miyano, “Drinking Water by Using Ultrafiltration Hollow Fiber Membranes,” Desalination, Vol.106, pp.55-61 (1996).
51.Nikolova, J. D. and M. A. Islam, “Contribution of Adsorbed Layer Resistance to the Flux-decline in Ultrafiltration Process,” Journal of Membrane Science, Vol.146, pp.105-111 (1998).
52.Nilson, J. A. and F. A. Digiano, “Influence of NOM Composition on Nanofiltration,” Journal American Water Works Association, Vol.88, pp.53-66 (1996).
53.Nishijima, W. and M. Okada, “Particle Separation as a Pretreatment of an Advanced Drinking Water Treatment Process by Ozonation and Biological Activated Carbon,” Water Science & Technology, Vol.37, pp.117-124 (1998).
54.Nystrom, M., K. Ruohomaki and L. Kaipia, “Performance of Membrane Filtration System Suited for Water Treatment,” Desalination, Vol.106, pp.79-87 (1996).
55.Park, Y. G., “Effect of Ozonation for Reducing Membrane-Fouling in the UF Membrane,” Desalination, Vol.147, pp.43-48 (2002).
56.Perkowski, J., L. Kos and S. Ledakowicz, “Application of Ozone in Textile Wastewater Treatment,” Ozone Science & Engineering, Vol.18, pp.73-85 (1996).
57.Pignatello, J. J., “Dark and Photoassisted Fe3+-Catalyaed Degradation of Chlorophenoxy Herbicides by Hydrogen Peroxide,” Environmental Science & Technology, Vol.26, pp.944-951 (1992).
58.Pryor, A. E. and M. Bukay, “Water Conservation through Cooling Tower Ozonation,” Ultrapure water, Vol.7, pp.24-30 (1990).
59.Rice, R. G., “Application of Ozone for Industrial Wastewater Treatment-A Review,” Ozone Science & Engineering, Vol.18, pp.477-515 (1997).
60.Sablani, S. S., M. F. A. Goosen, R. Al. Belushi and M. Wilf, “Concentration Polarization in Ultrafiltration and Reverse Osmosis: a Critical Review,” Desalination, Vol.141, pp.269-289 (2001).
61.Sakol, D. and K. Konieczny, “Application of Coagulation and Conventional Filtration in Raw Water Pretreatment Before Microfiltration Membranes,” Desalination, Vol.162, pp.61-73 (2004).
62.Satoshi, T., F. Kenji and K. H. Soo, “Membrane Fouling Decrease by Microfiltration with Ozone Scrubbing,” Desalination, Vol.106, pp.423-426 (1996).
63.Schlichter, B., V. Mavrov and H. Chmiel, “Study of a Hybrid process Combining Ozonation and Membrane Filtration-Filtration of Model Solutions,” Desalination, Vol.156, pp.257-265 (2003).
64.Schwingea, J., D. E. Wiley, A. G. Fane and R. Guenther, “Characterization of a Zigzag Spacer for Ultrafiltration,” Journal of Membrane Science, Vol.172, pp.19-31 (2000).
65.Seymour, S. K. and T. Matt, “Silt Density Index(SDI), Percent Plugging Factor(%PF): Their Relation to Actual Foulant Depositition,” Desalination, Vol.119, pp.259-262 (1998).
66.Shen, L. Q., Z. K. Xu, Z. M. Liu and Y. Y. Xu, “Ultrafiltration Hollow Fiber Membranes of Sulfonated Polyetherimide/ polyetherimide Blends: Preparation, Morphologies and Anti-fouling Properties,” Journal of Membrane Science, Vol.218, pp.279-293 (2003).
67.Singer, P. C., “Assessing Ozonation Research Needs in Water Treatment,” Journal American Water Works Association, ,Vol.28, pp.78-88 (1990).
68.Sonntag, C. V., P. Dowideit, X. Fang, R. Mertens, X. Pan, M. N. Schuchmann and H. P. Schuchmann, “The Fate of Peroxyl Radicals in Aqueous Solution,” Water Science & Technology, Vol.35, pp.9-15 (1997).
69.Strittmatter, R. J., B. Yang and D. A. Johnson, “A Comprehensive Investigation on the Application of Ozone in Cooling Water Syatem,” Ozone Science & Engineering, Vol.15, pp.47-80 (1993).
70.Takizawa, S., K. Fujita and K. H. Soo, “Membrane Fouling Decrease by Microfiltration with Ozone Scrubbing,” Desalination, Vol.106, pp.423-426 (1996).
71.Thomas, S., R. Schäfer, J. Caro and A. S. Morgenstern, “Investigation of Mass Transfer through Inorganic Membranes with Several Layers,” Catalysis Today, Vol.67, pp.205-216 (2001).
72.Tomiyasu, H., H. Fukutomi and G, Gordon, “Kinetics and Mechanism of Ozone Decomposition in Basic Aqueous Solution,” Inorganic Chemistry, Vo.l24, pp.2962-2974 (1985).
73.Vrouwenvelder, H., M. Nederlof and D. Kooij, “Biofouling of Membranes for Drinking Water Production,” Desalination, Vol.118, pp.157-166 (1998).
74.Wakewan, R., “Fouling in Crossflow Ultra-and Micro-Filtration,” Membrane Technology, Vol.70, pp.5-8 (1996).
75.Wang, L. and L. Song, “Flux Decline in Crossflow Microfiltration and Ultrafiltration: Experimental Verification of Fouling Dynamics,” Journal of Membrane Science, Vol.160, pp.41-50 (1999).
76.Webster, L., “Using Ozone to Treat Cooling Tower Water,” Asian Water & Sewage, Vol.11, pp.36-40 (1995).
77.Westerhoff, P., R. Song, G. Amy and R. Minear, “Application of Ozone Decomposition Models,” Ozone Science & Engineering, Vol.19, pp.55-73 (1997).
78.Yeh, H. M. and H. H. Wu, “Membrane Ultrafiltration in Combined Hollow-Fiber Modules System,” Journal of Membrane Science, Vol.124, pp.93-105 (1997).
79.Yeh, H. M. and J. W. Tsai, “Membrane Ultrafiltration in Multipass Hollow-Fiber Modules,” Journal of Membrane Science, Vol.142, pp.61-73 (1998).
80.Yiantsios, S. G. and A. J. Karabelas, “An Experimental Study of Humic Acid and Powerwd Activated Carbon Deposition on UF Membranes and Their Removal by Backwashing,” Conference on membranes in Drinking & Industrial Water Production, Desalination Publication, Vol.1, pp.357-371 (2000).
81.Zeman, L. J. and A. L. Zydney, “Microfiltration and Ultrafiltration: Principles and Applications,” Marcel Dekker, New York (1996).
82.中壢工業區服務中心環保組,「中壢工業區污水處理廠九十三年度十月份月報告」,中壢 (2004)。
83.王有為,「臭氧預處理對混凝效果之影響」,碩士論文,國立台灣大學環境工程研究所,臺北 (1993)。
84.吳宗榮、蔡基湧,「水及廢水分析」,德文書局,修訂十版,臺南 (1991)。
85.阮文昌,「薄膜生物反應槽積垢特性之研究」,碩士論文,朝陽科技大學環境工程與管理系,臺中 (2003)。
86.周珊珊,「淤泥指數(SDI)的測定方法及在淨水處理上的應用」,自來水會刊 (2001)。
87.林士正、楊子岳、盧文章,「薄膜程序前處理技術應用於廢水回收再利用實例介紹」,第五屆水再生及再利用研討會論文集,第200-210頁,臺北 (2000)。
88.邵信、周珊珊、陳致君、曾治乾、陳筱華,「工業區放流水回收模廠處理水之SDI分析」,第九屆水再生及再利用研討會論文集,第43-56頁,中壢 (2004)。
89.范姜仁茂,「預臭氧程序提升综合性工業廢水生物可分解性之研究」,碩士論文,國立中央大學環境工程研究所,中壢 (2001)。
90.張閔然,「竹科污水中奈米微粒之特性與污水污泥之脫水性」,碩士論文,國立台灣大學化學工程學系,臺北 (2002)。
91.梁孝文,「前氧化劑對混凝作用去除有機物之影響」,碩士論文,國立台灣大學環境工程研究所,臺北 (1996)。
92.陳姝樺,「以二氧化氯為前氧化劑對淨水混沉之影響探討」,碩士論文,逢甲大學環境工程與科學系,臺中 (2003)。
93.游庶海,「臭氧處理冷卻水及其回收利用之研究」,博士論文,國立中央大學環境工程研究所,中壢 (1999)。
94.經濟部工業局,「染整業水污染防治技術」,臺北 (1994)。
95.蔡美純,「從水中天然有機物官能基變化探討前臭氧/粒狀活性碳反應機制」,碩士論文,東海大學環境科學系,臺中 (2002)。
指導教授 曾迪華(Dyi-Hwa Tseng) 審核日期 2005-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明