博碩士論文 106226042 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:40 、訪客IP:3.144.252.140
姓名 羅鈺棠(Yu-Tang Luo)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 氮化物表面電漿生醫感測器之穩定化
(Stabilization of nitride-base surface plasmon resonance biosensors)
相關論文
★ 氮化物表面增益拉曼光譜於 肝纖維化判定的應用★ CANCER DIAGNOSIS WITH HUMAN BLOOD PLASMA USING NITRIDE SURFACE-ENHANCED RAMAN SPECTROSCOPY
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 以氮化物磊晶片作為啟發的表面電漿感測元件,不但結構簡單,體積小,材料穩定性高,其內部的氮化銦鎵量子井更可以取代雷射當作激發光源,以達到大面積檢測的效果。
雖然銀搭配藍光氮化物磊晶片產生的表面電漿共振現象可以在光致發光(photoluminescence, PL)光譜上達到很高的增強效果,但銀的不穩定性使得其相關的發展受到了限制與挑戰。本研究中,吾人設計了許多保護銀金屬層的結構,另外同時製程出不同的金屬其退火型態以及各種金屬合金,分別觀察在光譜上的表現與對於折射率變化的靈敏度分析,根據不同的測試結果,我們發現退火過後的銀奈米顆粒與鋁金屬層有較佳的穩定度。
拉曼光譜有別於PL光譜在於在量測樣品上可以在其光譜看到樣品相對應的波峰訊號,本研究將去氧核醣核酸(deoxyribonucleic acid, DNA)分子滴定在氮化物磊晶片上,搭配適當的金屬以達成表面增強拉曼散射的效果,測量其在拉曼光譜上的表現。根據不同濃度的DNA拉曼光譜,以量子井製程的感測元件能得到濃度最低達10-5M的DNA訊號。
摘要(英) The surface plasma biosensor built with nitride quantum wells (QWs) is of many advantages, including simplified structure and enhanced sensitivity. Although the surface plasma resonance (SPR) phenomenon induced by Ag on blue-emitting QWs can achieve high enhancement in photoluminescence (PL) spectrum intensity, the instability of Ag hinders the practical applications.
In this study, we investigated various structures to stabilize the Ag layer. In addition, we applied different annealing and alloying conditions in the device fabrication. It is found that the Ag annealed at 500 ºC and Al layer can effectively mitigate the oxidation/sulfuration issues of Ag layer.
Raman spectroscopy differs from PL spectroscopy in that it can see the corresponding peak signal of the sample in its spectrum on the measured sample. In this study, deoxyribonucleic acid (DNA) molecules were dropped on a micro-roughened QW epi-wafer, and the appropriate metal was used to achieve surface-enhanced Raman scattering (SERS). The SERS spectrum of diluted DNA solutions showed that the characteristic DNA signals can still be observed at the molar concentration down to the 10-5 M.
關鍵字(中) ★ 表面電漿
★ 氮化物
★ 生醫檢測
關鍵字(英)
論文目次 中文摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vii
第一章、緒論
1.1 前言 1
1.2 表面電漿共振生物晶片的源起與發展 4
1.3 氮化物材料結構、特性與其在生醫晶片的發展 8
1.4 表面電漿共振應用在氮化物磊晶片的優勢 11
1.5 銀的穩定性探討方案 17
1.6 血液循環DNA(ctDNA)用於腫瘤檢查的潛力 21
1.7 研究動機與章節架構 22

第二章、實驗原理、方法與儀器
2.1 表面電漿共振原理 24
2.2 局域表面電漿共振 33
2.3 表面增強拉曼散射 36
2.4 磊晶結構及製程步驟 42
2.5 金屬奈米顆粒化學製程過程 47
2.6 石墨烯製程過程 48
2.7 光激至發光量測系統 49
2.8 拉曼光譜量測系統 50
2.9 DNA藥品 51

第三章、分析與討論
3.1 銀金屬層與氮化物磊晶片之靈敏度實驗 52
3.2 銀的相關測試 54
3.2.1 型態 54
3.2.1.1 薄膜 54
3.2.1.2 退火後的奈米顆粒 56
3.2.1.3 撒上、藉由塗佈機旋轉塗佈的奈米顆粒 58
3.2.2 銀的穩定性 61
3.2.2.1 金-銀-金 61
3.2.2.2 鋁-銀 63
3.2.2.3 石墨烯-銀 66
3.3 金的相關測試 68
3.3.1 退火實驗 68
3.3.2 退火溫度改變 72
3.4 鋁的相關測試 74
3.4.1 厚度改變 74
3.5 DNA序列的拉曼光譜分析 78
3.5.1 氮化物磊晶片的粗糙度SEM圖 78
3.5.2 DNA的拉曼訊號 79

第四章、結論與未來展望
4.1 結論 83
4.2 未來發展 84

參考文獻 85
參考文獻 [1] Olanrewaju, A., Beaugrand, M., Yafia, M., & Juncker, D.. Capillary microfluidics in microchannels: from microfluidic networks to capillaric circuits. Lab on a Chip. The Royal Society of Chemistry. 18(16), 2323–2347 (2018).
[2] T. O. Joos et al. Miniaturised multiplexed immunoassays. Current Opinion in Chemical Biology. 6, 76-80 (2002).
[3] B. Liedberg et al. Surface plasmon resonance for gas detection and biosensing.
Sensors and Actuators. 4, 299 (1983).
[4] Nguyen, H., Park, J., Kang, S., & Kim, M. Surface Plasmon Resonance: A Versatile Technique for Biosensor Applications. Sensors. 15(5), 10481–10510 (2015).
[5] Y. Liu et al. Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms. Scientific Reports. 5, 12864 (2015).
[6] E. Wijaya et al. Current Opinion in Solid State and Materials Science. 15, 208 (2011).
[7]纖維鋅礦與立方晶系結構, Available at: http://www.matsuoka-lab.imr.tohoku.ac.jp/?katayama#notefoot_1.
[8] He, X.-G., Zhao, D.-G., & Jiang, D.-S. Formation of two-dimensional electron gas at AlGaN/GaN heterostructure and the derivation of its sheet density expression. Chinese Physics B. 24(6), 067301(2015).
[9] R. Thapa et al. Biofunctionalized AlGaN/GaN high electron mobility transistor for DNA hybridization detection. Appl. Phys. Lett. 100, 232109 (2012).
[10] Blow, N. Proteins and proteomics: life on the surface. Nature Methods. 6(5), 389–393 (2009).
[11] Dang, S., Li, C., Li, T., Jia, W., Han, P., & Xu, B. Light-extraction enhancement and directional emission control of GaN-based LED with transmission grating. Optik - International Journal for Light and Electron Optics. 125(14), 3623–3627 (2014).
[12] K. Okamoto et al. Surface-plasmon-enhanced light emitters
based on InGaN quantum wells. Nature Materials. 3, 601 (2004).
[13] Shu Tian et al. Aluminum Nanocrystals: A Sustainable Substrate for Quantitative SERS-Based DNA Detection. Nano Lett. 17, 5071−5077 (2017).
[14] Reed, J. C., Zhu, H., Zhu, A. Y., Li, C., & Cubukcu, E. Graphene-Enabled Silver Nanoantenna Sensors. Nano Letters. 12(8), 4090–4094 (2012).
[15] Wang, Z. et al. Stable and Sensitive Silver Surface Plasmon Resonance Imaging Sensor Using Trilayered Metallic Structures. Analytical Chemistry. 86(3), 1430–1436 (2014).
[16] Desireddy, A. et al. Ultrastable silver nanoparticles. Nature. Vol 501 (2013).
[17]羅仁瓏.以氮化物表面電漿結構研製的生醫感測微晶片.國立中央大學. 碩士論文(2017)
[18] Wood, R.W. XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Philosophical Magazine Series 6. 4, 396-402 (1902).
[19] U. Fano. The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces (Sommerfeld’s Waves). Journal of the Optical Society of America. Vol. 31, pp. 213-222 (1941).
[20] A. Hessel and A. A. Oliner. A New Theory of Wood’s Anomalies on Optical Gratings. Applied Optics. Vol. 4, pp. 1275-1297 (1965).
[21] 蔡定平. 金屬表面電漿簡介. 物理雙月刊(28卷二期)(2006).
[22] Bonyar, A., Wimmer, B., & Csarnovics, I. Investigation of Thermally Generated Gold Nanoparticles with AFM. IEEE 19th International Symposium for Design and Technology in Electronic Packaging (SIITME) (2013).
[23] Kuwata, H., Tamaru, H., Esumi, K., & Miyano, K. Resonant light scattering from metal nanoparticles: Practical analysis beyond Rayleigh approximation. Applied Physics Letters, 83(22), 4625–4627 (2003).
[24] García-Vidal, F. J., & Pendry, J. B. Collective Theory for Surface Enhanced Raman Scattering. Physical Review Letters, 77(6), 1163–1166 (1996).
[25] Campion, A. & Kambhampati, P. Surface-enhanced Raman scattering. Chem. Soc. Rev. 27, 241–250 (1998).
[26] 有機金屬化學氣相沉積法. Available at: https://zh.wikipedia.org/wiki/ .
[27] 石墨烯製程過程。Available at: http://www.kingyoup.com/kyopt/article/%E7%9F%B3%E5%A2%A8%E7%83%AF%E5%8C%96%E5%AD%B8%E6%B0%A3%E7%9B%B8%E6%B2%89%E7%A9%8D(CVD)%E8%A3%BD%E7%A8%8B%E7%94%A8%E9%81%8E%E6%B8%A1%E9%87%91%E5%B1%AC%E2%80%94%E9%8A%85%E7%AE%94.pdf .
[28] 不同尺寸的金奈米顆粒對應的吸收光譜比較. Available at:http://www.cytodiagnostics.com/store/pc/viewcontent.asp?idpage=2
[29] Serrano, A., Rodríguez de la Fuente, O., & García, M. A. Extended and localized surface plasmons in annealed Au films on glass substrates. Journal of Applied Physics. 108(7), 074303 (2010).
[30] Xu, L.-J., Lei, Z.-C., Li, J., Zong, C., Yang, C. J., & Ren, B. Label-Free Surface-Enhanced Raman Spectroscopy Detection of DNA with Single-Base Sensitivity. Journal of the American Chemical Society. 137(15), 5149–5154 (2015)
指導教授 賴昆佑 簡汎清(Kun-Yu Lai Fan-Ching Chien) 審核日期 2019-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明